Testing and characterization of carbon nanotubes as strain sensors

Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, June 2011.

Bibliographic Details
Main Author: Diaz, Juan D
Other Authors: Ian W. Hunter.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2012
Subjects:
Online Access:http://hdl.handle.net/1721.1/69506
_version_ 1826211936653541376
author Diaz, Juan D
author2 Ian W. Hunter.
author_facet Ian W. Hunter.
Diaz, Juan D
author_sort Diaz, Juan D
collection MIT
description Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, June 2011.
first_indexed 2024-09-23T15:13:46Z
format Thesis
id mit-1721.1/69506
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T15:13:46Z
publishDate 2012
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/695062019-04-12T15:28:31Z Testing and characterization of carbon nanotubes as strain sensors Diaz, Juan D Ian W. Hunter. Massachusetts Institute of Technology. Dept. of Mechanical Engineering. Massachusetts Institute of Technology. Dept. of Mechanical Engineering. Mechanical Engineering. Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, June 2011. "June 2011." Cataloged from PDF version of thesis. Includes bibliographical references (p. 42-43). The potential of using carbon nanotube coated flexible cloth as strain gauges was studied. Samples were prepared by sonicating strips of cloth inside a 1mg/ml carbon nanotube in propylene carbonate solution. A dynamic mechanical analyzer was built that applied uniaxial cyclical strains to the samples and recorded the force and strain applied. The DMA also provided a constant voltage to the samples while recording the resistance response of the strain gauges. The samples were tested using the dynamic mechanical analyzer for their response to variables such as strain and time. The samples were successfully tested at strains ranging from 1% to 50%. The conductivity of the samples was measured. We studied the effects that a carboxylate and the sulfonate functional groups of the carbon nanotubes have on the strain sensors, the effect of the sonication time, and the effect that leaving the strain sensors inside the solution for different amount of times has on the strain sensors. It was discovered that the samples dried overtime, thus decreasing the conductivity of the samples and damaging the strain sensors. An encapsulation method was developed and studied to counter the drying effect. The results showed that the encapsulation method did delay the decaying of the samples. Moreover, it was concluded that the sulfonate group had higher changes in resistance than the carboxylate group. While increased sonication time did not seem to have a measurable effect on the resistance of the sulfonate CNT samples, this was not true for the carboxylate group CNTs. The carboxylate group CNTs seemed to have a higher initial resistance with longer sonication time and a lower resistance with increasing time sitting in the solution. Overall, it was concluded that carbon nanotubes have a promising potential as macro level strain sensors for high-elongation applications but more development is yet to be done. by Juan D. Diaz. S.B. 2012-02-29T18:22:17Z 2012-02-29T18:22:17Z 2011 Thesis http://hdl.handle.net/1721.1/69506 775674869 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 43 p. application/pdf Massachusetts Institute of Technology
spellingShingle Mechanical Engineering.
Diaz, Juan D
Testing and characterization of carbon nanotubes as strain sensors
title Testing and characterization of carbon nanotubes as strain sensors
title_full Testing and characterization of carbon nanotubes as strain sensors
title_fullStr Testing and characterization of carbon nanotubes as strain sensors
title_full_unstemmed Testing and characterization of carbon nanotubes as strain sensors
title_short Testing and characterization of carbon nanotubes as strain sensors
title_sort testing and characterization of carbon nanotubes as strain sensors
topic Mechanical Engineering.
url http://hdl.handle.net/1721.1/69506
work_keys_str_mv AT diazjuand testingandcharacterizationofcarbonnanotubesasstrainsensors