Stiffness and strength of suture joints in nature

Suture joints are remarkable mechanical structures found throughout nature composed of compliant interlocking seams connecting stiffer components. This study investigates the underlying mechanisms and the role of geometry governing the unique mechanical behavior of suture joints. Analytical and nume...

Full description

Bibliographic Details
Main Authors: Li, Yaning, Ortiz, Christine, Boyce, Mary Cunningham
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Language:en_US
Published: American Physical Society (APS) 2012
Online Access:http://hdl.handle.net/1721.1/69566
https://orcid.org/0000-0003-3511-5679
https://orcid.org/0000-0002-2193-377X
Description
Summary:Suture joints are remarkable mechanical structures found throughout nature composed of compliant interlocking seams connecting stiffer components. This study investigates the underlying mechanisms and the role of geometry governing the unique mechanical behavior of suture joints. Analytical and numerical composite models are formulated for two suture geometries characterized by a single repeating wavelength (e.g., triangular and rectangular). Stiffness, strength, and local stress distributions are predicted to assess variations in deformation and failure mechanisms. A unique homogeneous stress field is observed throughout both the skeletal and interfacial components of the triangular geometry, thus providing advantages in load transmission, weight, stiffness, strength, energy absorption, and fatigue over the rectangular geometry. The results obtained have relevance to biomimetic design and optimization, suture growth and fusion, and evolutionary phenotype diversity.