Nearly flat band with Chern number C=2 on the dice lattice

Motivated by recent experiments on the material Ba[subscript 3]NiSb[subscript 2]O[subscript 9], we consider a spin-one quantum antiferromagnet on a triangular lattice with the Heisenberg bilinear and biquadratic exchange interactions and a single-ion anisotropy. Using a fermionic “triplon” represent...

Full description

Bibliographic Details
Main Authors: Wang, Fa, Ran, Ying
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:en_US
Published: American Physical Society (APS) 2012
Online Access:http://hdl.handle.net/1721.1/69601
Description
Summary:Motivated by recent experiments on the material Ba[subscript 3]NiSb[subscript 2]O[subscript 9], we consider a spin-one quantum antiferromagnet on a triangular lattice with the Heisenberg bilinear and biquadratic exchange interactions and a single-ion anisotropy. Using a fermionic “triplon” representation for spins, we study the phase diagram within mean-field theory. In addition to a fully gapped spin-liquid ground state, we find a state where one gapless triplon mode with a Fermi surface coexists with d+id topological pairing of the other triplons. Despite the existence of a Fermi surface, this ground state has fully gapped bulk spin excitations. Such a state has linear in-temperature specific heat and constant in-plane spin susceptibility, with an unusually high Wilson ratio.