Electrochemically driven phase transformation in energy storage compounds

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2011.

Bibliographic Details
Main Author: Gao, Yuhua
Other Authors: Yet-Ming Chiang.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2012
Subjects:
Online Access:http://hdl.handle.net/1721.1/69790
_version_ 1811085523320569856
author Gao, Yuhua
author2 Yet-Ming Chiang.
author_facet Yet-Ming Chiang.
Gao, Yuhua
author_sort Gao, Yuhua
collection MIT
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2011.
first_indexed 2024-09-23T13:10:56Z
format Thesis
id mit-1721.1/69790
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T13:10:56Z
publishDate 2012
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/697902019-04-10T09:40:40Z Electrochemically driven phase transformation in energy storage compounds Gao, Yuhua Yet-Ming Chiang. Massachusetts Institute of Technology. Dept. of Materials Science and Engineering. Massachusetts Institute of Technology. Dept. of Materials Science and Engineering. Materials Science and Engineering. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2011. Cataloged from PDF version of thesis. Includes bibliographical references (p. 124-132). Nanoscale lithium transition metal phosphate olivines have become commercially important as positive electrode materials in a new generation of lithium-ion batteries. Not surprisingly, many energy storage compounds undergo phase transitions in-situ, including the production of metastable phases. Unique to this environment is the frequent application of electrical over- and underpotentials, which are the electrical analogs to undercooling and superheating. So far, overpotential effects on phase stability and transformation mechanisms have not been studied in detail. Here we use synchrotron X-ray diffraction performed in-situ during potentiostatic and galvanostatic cycling, combined with phase-field modeling, to reveal a remarkable dependence of phase transition pathways on overpotential in the model olivine Lii. ,FePO 4. For a sample of particle size -113 nm, at both low (e.g., <20 mV) and high (e.g., >75 mV) overpotentials, a crystal-to-crystal olivine transformation is preferred, whereas at intermediate overpotentials a crystalline-to-amorphous phase transition dominates. As particle sizes decrease to the nanoscale, amorphization is further emphasized. Moreover, in the LiipxFei. yMnyPO 4 (y=0. 1, 0.4) system, the phase transition behavior is ovepotential dependent, and the crystallization of the amorphous phase is overpotential driven. An extensive nonequilibrium solid solution has been observed upon galvanostatic discharge. The misfit strain between two end members determines the reaction type as well as the phase transformation rate. High rate capability is expected in Lii.xFe1.yMnyPO 4 when the misfit is adequately tuned by Mn content. In addition, the discrepancy in phase compositions between dynamic and equilibrium states can be resolved by inter-crystallite ion diffusion among phases, e.g. ion diffusion between amorphous and crystalline phases. by Yu-Hua Kao. Ph.D. 2012-03-16T16:03:25Z 2012-03-16T16:03:25Z 2011 2011 Thesis http://hdl.handle.net/1721.1/69790 777366510 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 132 p. application/pdf Massachusetts Institute of Technology
spellingShingle Materials Science and Engineering.
Gao, Yuhua
Electrochemically driven phase transformation in energy storage compounds
title Electrochemically driven phase transformation in energy storage compounds
title_full Electrochemically driven phase transformation in energy storage compounds
title_fullStr Electrochemically driven phase transformation in energy storage compounds
title_full_unstemmed Electrochemically driven phase transformation in energy storage compounds
title_short Electrochemically driven phase transformation in energy storage compounds
title_sort electrochemically driven phase transformation in energy storage compounds
topic Materials Science and Engineering.
url http://hdl.handle.net/1721.1/69790
work_keys_str_mv AT gaoyuhua electrochemicallydrivenphasetransformationinenergystoragecompounds