Phoresis in fluids

This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise quiescent single-component gases and liquids and animated by a gradient in the flu...

Full description

Bibliographic Details
Main Author: Brenner, Howard
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering
Format: Article
Language:en_US
Published: American Physical Society 2012
Online Access:http://hdl.handle.net/1721.1/69841
Description
Summary:This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise quiescent single-component gases and liquids and animated by a gradient in the fluid's temperature (thermophoresis), pressure (barophoresis), density (pycnophoresis), or any combination thereof. The ansatz builds upon a recent paper [ Phys. Rev. E 84 046309 (2011)] concerned with slip of the fluid's mass velocity at solid surfaces—that is, with phenomena arising from violations of the classical no-slip fluid-mechanical boundary condition. Experimental and other data are cited in support of the phoretic model developed herein.