Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion
We propose a semidefinite optimization (SDP) model for the class of minimax two-stage stochastic linear optimization problems with risk aversion. The distribution of second-stage random variables belongs to a set of multivariate distributions with known first and second moments. For the minimax stoc...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute for Operations Research and the Management Sciences
2012
|
Online Access: | http://hdl.handle.net/1721.1/69922 https://orcid.org/0000-0002-1985-1003 |
Summary: | We propose a semidefinite optimization (SDP) model for the class of minimax two-stage stochastic linear optimization problems with risk aversion. The distribution of second-stage random variables belongs to a set of multivariate distributions with known first and second moments. For the minimax stochastic problem with random objective, we provide a tight SDP formulation. The problem with random right-hand side is NP-hard in general. In a special case, the problem can be solved in polynomial time. Explicit constructions of the worst-case distributions are provided. Applications in a production-transportation problem and a single facility minimax distance problem are provided to demonstrate our approach. In our experiments, the performance of minimax solutions is close to that of data-driven solutions under the multivariate normal distribution and better under extremal distributions. The minimax solutions thus guarantee to hedge against these worst possible distributions and provide a natural distribution to stress test stochastic optimization problems under distributional ambiguity. |
---|