Collective strong coupling between ion Coulomb crystals and an optical cavity field: Theory and experiment
A detailed description and theoretical analysis of experiments achieving coherent coupling between an ion Coulomb crystal and an optical cavity field are presented. The various methods used to measure the coherent coupling rate between large ion Coulomb crystals in a linear quadrupole radiofrequency...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Physical Society
2012
|
Online Access: | http://hdl.handle.net/1721.1/70449 |
Summary: | A detailed description and theoretical analysis of experiments achieving coherent coupling between an ion Coulomb crystal and an optical cavity field are presented. The various methods used to measure the coherent coupling rate between large ion Coulomb crystals in a linear quadrupole radiofrequency ion trap and a single-field mode of a moderately high-finesse cavity are described in detail. Theoretical models based on a semiclassical approach are applied in assessment of the experimental results of P. F. Herskind et al.[ Nature Phys. 5 494 (2009)] and of complementary new measurements. Generally, a very good agreement between theory and experiments is obtained. |
---|