Power system balancing with high renewable penetration : the potential of demand response
Thesis (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, February 2012.
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Language: | eng |
Published: |
Massachusetts Institute of Technology
2012
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/70820 |
_version_ | 1811069045036810240 |
---|---|
author | Critz, David Karl |
author2 | Stephen Connors. |
author_facet | Stephen Connors. Critz, David Karl |
author_sort | Critz, David Karl |
collection | MIT |
description | Thesis (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, February 2012. |
first_indexed | 2024-09-23T08:04:49Z |
format | Thesis |
id | mit-1721.1/70820 |
institution | Massachusetts Institute of Technology |
language | eng |
last_indexed | 2024-09-23T08:04:49Z |
publishDate | 2012 |
publisher | Massachusetts Institute of Technology |
record_format | dspace |
spelling | mit-1721.1/708202022-01-13T07:54:46Z Power system balancing with high renewable penetration : the potential of demand response Critz, David Karl Stephen Connors. System Design and Management Program. System Design and Management Program. Massachusetts Institute of Technology. Engineering Systems Division Engineering Systems Division. System Design and Management Program. Thesis (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, February 2012. "September 2011." Cataloged from PDF version of thesis. Includes bibliographical references (p. 61-62). This study investigated the ability of responsive demand to stabilize the electrical grid when intermittent renewable resources are present. The WILMAR stochastic unit commitment model was used to represent a version of the Danish electricity and heat system with an enhanced level of wind generation. The study found that demand response reduced the marginal operating cost of the electrical system 3%. Demand response reduced CO₂ /SO₂ emissions levels 3% by enabling 11% more generation of wind power. Demand resources representing 25% of nameplate wind power and priced at 150% of a gas turbine's marginal cost were a recommended combination that balanced maximum system improvement at minimal ratepayer impact. The system cost benefits of each study case enabled the calculation of a demand curve representing the system operator's willingness to pay fixed costs for capacity from the pool of operating savings. With demand response, wind generators increased profits, coal plants reduced profits slightly, and natural gas plant profit was cut to almost zero. With high levels of unpredictable renewable resources and limited ability to import power, demand response represents a promising technique to balance the grid at low cost. by D. Karl Critz. S.M.in Engineering and Management 2012-05-15T21:15:08Z 2012-05-15T21:15:08Z 2011 2012 Thesis http://hdl.handle.net/1721.1/70820 793105210 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 71 p. application/pdf Massachusetts Institute of Technology |
spellingShingle | Engineering Systems Division. System Design and Management Program. Critz, David Karl Power system balancing with high renewable penetration : the potential of demand response |
title | Power system balancing with high renewable penetration : the potential of demand response |
title_full | Power system balancing with high renewable penetration : the potential of demand response |
title_fullStr | Power system balancing with high renewable penetration : the potential of demand response |
title_full_unstemmed | Power system balancing with high renewable penetration : the potential of demand response |
title_short | Power system balancing with high renewable penetration : the potential of demand response |
title_sort | power system balancing with high renewable penetration the potential of demand response |
topic | Engineering Systems Division. System Design and Management Program. |
url | http://hdl.handle.net/1721.1/70820 |
work_keys_str_mv | AT critzdavidkarl powersystembalancingwithhighrenewablepenetrationthepotentialofdemandresponse |