Toward natural interaction in the real world: real-time gesture recognition

Using a new hand tracking technology capable of tracking 3D hand postures in real-time, we developed a recognition system for continuous natural gestures. By natural gestures, we mean those encountered in spontaneous interaction, rather than a set of artificial gestures chosen to simplify recognitio...

Full description

Bibliographic Details
Main Authors: Yin, Ying, Davis, Randall
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Article
Language:en_US
Published: Association for Computing Machinery (ACM) 2012
Online Access:http://hdl.handle.net/1721.1/71012
https://orcid.org/0000-0001-5232-7281
Description
Summary:Using a new hand tracking technology capable of tracking 3D hand postures in real-time, we developed a recognition system for continuous natural gestures. By natural gestures, we mean those encountered in spontaneous interaction, rather than a set of artificial gestures chosen to simplify recognition. To date we have achieved 95.6% accuracy on isolated gesture recognition, and 73% recognition rate on continuous gesture recognition, with data from 3 users and twelve gesture classes. We connected our gesture recognition system to Google Earth, enabling real time gestural control of a 3D map. We describe the challenges of signal accuracy and signal interpretation presented by working in a real-world environment, and detail how we overcame them.