Automorphisms mapping a point into a subvariety

The problem of deciding, given a complex variety X, a point x \in X, and a subvariety Z \subseteq X, whether there is an automorphism of X mapping x into Z is proved undecidable. Along the way, we prove the undecidability of a version of Hilbert's tenth problem for systems of polynomials...

Full description

Bibliographic Details
Main Authors: Poonen, Bjorn, Aschenbrenner, Matthias
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:en_US
Published: American Mathematical Society (AMS)/University Press Inc. 2012
Online Access:http://hdl.handle.net/1721.1/71609
https://orcid.org/0000-0002-8593-2792
_version_ 1826216214691577856
author Poonen, Bjorn
Aschenbrenner, Matthias
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
Poonen, Bjorn
Aschenbrenner, Matthias
author_sort Poonen, Bjorn
collection MIT
description The problem of deciding, given a complex variety X, a point x \in X, and a subvariety Z \subseteq X, whether there is an automorphism of X mapping x into Z is proved undecidable. Along the way, we prove the undecidability of a version of Hilbert's tenth problem for systems of polynomials over Z defining an affine Q-variety whose projective closure is smooth.
first_indexed 2024-09-23T16:44:07Z
format Article
id mit-1721.1/71609
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T16:44:07Z
publishDate 2012
publisher American Mathematical Society (AMS)/University Press Inc.
record_format dspace
spelling mit-1721.1/716092022-10-03T07:53:46Z Automorphisms mapping a point into a subvariety Poonen, Bjorn Aschenbrenner, Matthias Massachusetts Institute of Technology. Department of Mathematics Poonen, Bjorn Poonen, Bjorn The problem of deciding, given a complex variety X, a point x \in X, and a subvariety Z \subseteq X, whether there is an automorphism of X mapping x into Z is proved undecidable. Along the way, we prove the undecidability of a version of Hilbert's tenth problem for systems of polynomials over Z defining an affine Q-variety whose projective closure is smooth. National Science Foundation (U.S.) (NSF grant DMS-0841321) National Science Foundation (U.S.) (NSF grant DMS-0556197) 2012-07-12T20:09:45Z 2012-07-12T20:09:45Z 2011-03 2009-07 Article http://purl.org/eprint/type/JournalArticle 1056-3911 1534-7486 http://hdl.handle.net/1721.1/71609 Poonen, Bjorn. “Automorphisms Mapping a Point into a Subvariety.” Journal of Algebraic Geometry 20.4 (2011): 785–794. Web. https://orcid.org/0000-0002-8593-2792 en_US http://dx.doi.org/10.1090/S1056-3911-2011-00543-2 Journal of Algebraic Geometry Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/ application/pdf American Mathematical Society (AMS)/University Press Inc. MIT web domain
spellingShingle Poonen, Bjorn
Aschenbrenner, Matthias
Automorphisms mapping a point into a subvariety
title Automorphisms mapping a point into a subvariety
title_full Automorphisms mapping a point into a subvariety
title_fullStr Automorphisms mapping a point into a subvariety
title_full_unstemmed Automorphisms mapping a point into a subvariety
title_short Automorphisms mapping a point into a subvariety
title_sort automorphisms mapping a point into a subvariety
url http://hdl.handle.net/1721.1/71609
https://orcid.org/0000-0002-8593-2792
work_keys_str_mv AT poonenbjorn automorphismsmappingapointintoasubvariety
AT aschenbrennermatthias automorphismsmappingapointintoasubvariety