Near-field thermal radiation transfer controlled by plasmons in graphene

It is shown that thermally excited plasmon-polariton modes can strongly mediate, enhance, and tune the near-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange on doping and electron relaxation time is analyzed in the near infrared withi...

Full description

Bibliographic Details
Main Authors: Ilic, Ognjen, Jablan, Marinko, Buljan, Hrvoje, Soljacic, Marin, Joannopoulos, John, Celanovic, Ivan L.
Other Authors: Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies
Format: Article
Language:en_US
Published: American Physical Society 2012
Online Access:http://hdl.handle.net/1721.1/71706
https://orcid.org/0000-0002-7184-5831
https://orcid.org/0000-0002-7244-3682
https://orcid.org/0000-0001-8651-7438
Description
Summary:It is shown that thermally excited plasmon-polariton modes can strongly mediate, enhance, and tune the near-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange on doping and electron relaxation time is analyzed in the near infrared within the framework of fluctuational electrodynamics. The dominant contribution to heat transfer can be controlled to arise from either interband or intraband processes. We predict maximum transfer at low doping and for plasmons in two graphene sheets in resonance, with orders-of-magnitude enhancement (e.g., 10[superscript 2] to 10[superscript 3] for separations between 0.1 μm and 10 nm) over the Stefan-Boltzmann law, known as the far-field limit. Strong, tunable, near-field transfer offers the promise of an externally controllable thermal switch as well as a novel hybrid graphene-graphene thermoelectric/thermophotovoltaic energy conversion platform.