Mixed-state quantum transport in correlated spin networks
Quantum spin networks can be used to transport information between separated registers in a quantum-information processor. To find a practical implementation, the strict requirements of ideal models for perfect state transfer need to be relaxed, allowing for complex coupling topologies and general i...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Physical Society
2012
|
Online Access: | http://hdl.handle.net/1721.1/71723 https://orcid.org/0000-0003-0544-5263 https://orcid.org/0000-0003-3207-594X |
Summary: | Quantum spin networks can be used to transport information between separated registers in a quantum-information processor. To find a practical implementation, the strict requirements of ideal models for perfect state transfer need to be relaxed, allowing for complex coupling topologies and general initial states. Here we analyze transport in complex quantum spin networks in the maximally mixed state and derive explicit conditions that should be satisfied by propagators for perfect state transport. Using a description of the transport process as a quantum walk over the network, we show that it is necessary to phase-correlate the transport processes occurring along all the possible paths in the network. We provide a Hamiltonian that achieves this correlation and use it in a constructive method to derive engineered couplings for perfect transport in complicated network topologies. |
---|