Prediction of [superscript 57] Fe Mossbauer Parameters by Density Functional Theory: A Benchmark Study
We report the performance of eight density functionals (B3LYP, BPW91, OLYP, O3LYP, M06, M06-2X, PBE, and SVWN5) in two Gaussian basis sets (Wachters and Partridge-1 on iron atoms; cc-pVDZ on the rest of atoms) for prediction of the isomer shift (IS) and quadrupole splitting (QS) parameters of Mössb...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Chemical Society (ACS)
2012
|
Online Access: | http://hdl.handle.net/1721.1/71930 https://orcid.org/0000-0002-2693-4982 |
_version_ | 1826212744036089856 |
---|---|
author | Bochevarov, Arteum D. Friesner, Richard A. Lippard, Stephen J. |
author2 | Massachusetts Institute of Technology. Department of Chemistry |
author_facet | Massachusetts Institute of Technology. Department of Chemistry Bochevarov, Arteum D. Friesner, Richard A. Lippard, Stephen J. |
author_sort | Bochevarov, Arteum D. |
collection | MIT |
description | We report the performance of eight density functionals (B3LYP, BPW91, OLYP, O3LYP, M06, M06-2X, PBE, and SVWN5) in two Gaussian basis sets (Wachters and Partridge-1 on iron atoms; cc-pVDZ on the rest of atoms) for prediction of the isomer shift (IS) and quadrupole splitting (QS) parameters of Mössbauer spectroscopy. Two sources of geometry (density functional theory optimized and X-ray) are used. Our data set consists of 31 iron-containing compounds (35 signals), the Mössbauer spectra of which were determined at liquid helium temperature and where the X-ray geometries are known. Our results indicate that the larger and uncontracted Partridge-1 basis set produces slightly more accurate linear correlations of electronic density used for prediction of IS and noticeably more accurate results for the QS parameters. We confirm and discuss the earlier observation of Noodleman and co-workers that different oxidation states of iron produce different IS calibration lines. The B3LYP and O3LYP functionals have the lowest errors for either IS or QS. BPW91, OLYP, PBE, and M06 have mixed success, whereas SVWN5 and M06-2X demonstrate the worst performance. Finally, our calibrations and conclusions regarding the best functional to compute the Mössbauer characteristics are applied to candidate structures for the peroxo and Q intermediates of the enzyme methane monooxygenase hydroxylase (MMOH) and are compared to experimental data in the literature. |
first_indexed | 2024-09-23T15:37:04Z |
format | Article |
id | mit-1721.1/71930 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T15:37:04Z |
publishDate | 2012 |
publisher | American Chemical Society (ACS) |
record_format | dspace |
spelling | mit-1721.1/719302022-09-29T15:03:15Z Prediction of [superscript 57] Fe Mossbauer Parameters by Density Functional Theory: A Benchmark Study Bochevarov, Arteum D. Friesner, Richard A. Lippard, Stephen J. Massachusetts Institute of Technology. Department of Chemistry Lippard, Stephen J. Lippard, Stephen J. We report the performance of eight density functionals (B3LYP, BPW91, OLYP, O3LYP, M06, M06-2X, PBE, and SVWN5) in two Gaussian basis sets (Wachters and Partridge-1 on iron atoms; cc-pVDZ on the rest of atoms) for prediction of the isomer shift (IS) and quadrupole splitting (QS) parameters of Mössbauer spectroscopy. Two sources of geometry (density functional theory optimized and X-ray) are used. Our data set consists of 31 iron-containing compounds (35 signals), the Mössbauer spectra of which were determined at liquid helium temperature and where the X-ray geometries are known. Our results indicate that the larger and uncontracted Partridge-1 basis set produces slightly more accurate linear correlations of electronic density used for prediction of IS and noticeably more accurate results for the QS parameters. We confirm and discuss the earlier observation of Noodleman and co-workers that different oxidation states of iron produce different IS calibration lines. The B3LYP and O3LYP functionals have the lowest errors for either IS or QS. BPW91, OLYP, PBE, and M06 have mixed success, whereas SVWN5 and M06-2X demonstrate the worst performance. Finally, our calibrations and conclusions regarding the best functional to compute the Mössbauer characteristics are applied to candidate structures for the peroxo and Q intermediates of the enzyme methane monooxygenase hydroxylase (MMOH) and are compared to experimental data in the literature. National Institutes of Health (U.S.) (Grant Number GM 32134) 2012-08-01T15:41:38Z 2012-08-01T15:41:38Z 2010-11 2010-07 Article http://purl.org/eprint/type/JournalArticle 1549-9618 1549-9626 http://hdl.handle.net/1721.1/71930 Bochevarov, Arteum D., Richard A. Friesner, and Stephen J. Lippard. “Prediction of 57 Fe Mössbauer Parameters by Density Functional Theory: A Benchmark Study.” Journal of Chemical Theory and Computation 6.12 (2010): 3735–3749. https://orcid.org/0000-0002-2693-4982 en_US http://dx.doi.org/10.1021/ct100398m Journal of Chemical Theory and Computation Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf American Chemical Society (ACS) PMC |
spellingShingle | Bochevarov, Arteum D. Friesner, Richard A. Lippard, Stephen J. Prediction of [superscript 57] Fe Mossbauer Parameters by Density Functional Theory: A Benchmark Study |
title | Prediction of [superscript 57] Fe Mossbauer Parameters by Density Functional Theory: A Benchmark Study |
title_full | Prediction of [superscript 57] Fe Mossbauer Parameters by Density Functional Theory: A Benchmark Study |
title_fullStr | Prediction of [superscript 57] Fe Mossbauer Parameters by Density Functional Theory: A Benchmark Study |
title_full_unstemmed | Prediction of [superscript 57] Fe Mossbauer Parameters by Density Functional Theory: A Benchmark Study |
title_short | Prediction of [superscript 57] Fe Mossbauer Parameters by Density Functional Theory: A Benchmark Study |
title_sort | prediction of superscript 57 fe mossbauer parameters by density functional theory a benchmark study |
url | http://hdl.handle.net/1721.1/71930 https://orcid.org/0000-0002-2693-4982 |
work_keys_str_mv | AT bochevarovarteumd predictionofsuperscript57femossbauerparametersbydensityfunctionaltheoryabenchmarkstudy AT friesnerricharda predictionofsuperscript57femossbauerparametersbydensityfunctionaltheoryabenchmarkstudy AT lippardstephenj predictionofsuperscript57femossbauerparametersbydensityfunctionaltheoryabenchmarkstudy |