An energy management IC for bio-implants using ultracapacitors for energy storage

We present the first known energy management IC to allow low-power systems, such as biomedical implants, to optimally use ultracapacitors instead of batteries as their chief energy storage elements. The IC, fabricated in a 0.18 μm CMOS process, consists of a switched-capacitor DC-DC converter, a 4 n...

Full description

Bibliographic Details
Main Authors: Sanchez, William R., Sodini, Charles G., Dawson, Joel L.
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers (IEEE) 2012
Online Access:http://hdl.handle.net/1721.1/71956
https://orcid.org/0000-0002-0413-8774
Description
Summary:We present the first known energy management IC to allow low-power systems, such as biomedical implants, to optimally use ultracapacitors instead of batteries as their chief energy storage elements. The IC, fabricated in a 0.18 μm CMOS process, consists of a switched-capacitor DC-DC converter, a 4 nW bandgap voltage reference, a high-efficiency rectifier to allow wireless recharging of the capacitor bank, and a switch matrix and digital control circuitry to govern the stacking and unstacking of the ultracapacitors. The stacking procedure allows for more than 98% of the initial energy stored in the capacitors to be removed before the output voltage drops unsuitably low. The DC-DC converter achieves a peak efficiency of 51% for loads between 10 and 100 μW, operates for input voltages between 1.25 and 2.5 V.