Solution-Based Structural Analysis of the Decaheme Cytochrome, MtrA, by Small-Angle X-ray Scattering and Analytical Ultracentrifugation

The potential exploitation of metal-reducing bacteria as a means for environmental cleanup or alternative fuel is an exciting prospect; however, the cellular processes that would allow for these applications need to be better understood. MtrA is a periplasmic decaheme c-type cytochrome from Shewanel...

Full description

Bibliographic Details
Main Authors: Firer-Sherwood, Mackenzie A., Ando, Nozomi, Elliott, Sean J., Drennan, Catherine L
Other Authors: Massachusetts Institute of Technology. Department of Biology
Format: Article
Language:en_US
Published: American Chemical Society (ACS) 2012
Online Access:http://hdl.handle.net/1721.1/71979
https://orcid.org/0000-0001-5486-2755
Description
Summary:The potential exploitation of metal-reducing bacteria as a means for environmental cleanup or alternative fuel is an exciting prospect; however, the cellular processes that would allow for these applications need to be better understood. MtrA is a periplasmic decaheme c-type cytochrome from Shewanella oneidensis involved in the reduction of extracellular iron oxides and therefore is a critical element in Shewanella ability to engage in extracellular charge transfer. As a relatively small 333-residue protein, the heme content is surprisingly high. MtrA is believed to obtain electrons from the inner membrane-bound quinol oxidoreductase, CymA, and shuttle them across the outer membrane to MtrC, another decaheme cytochrome that directly interacts with insoluble metal oxides. How MtrA is able to perform this task is a question of interest. Here through the use of two solution-based techniques, small-angle X-ray scattering (SAXS) and analytical ultracentrifugation (AUC), we present the first structural analysis of MtrA. Our results establish that between 0.5 and 4 mg/mL, MtrA exists as a monomeric protein that is shaped like an extended molecular “wire” with a maximum protein dimension (D[subscript max]) of 104 Å and a rod-like aspect ratio of 2.2 to 2.5. This study contributes to a greater understanding of how MtrA fulfills its role in the redox processes that must occur before electrons reach the outside of the cell.