Decelerated spreading in degree-correlated networks
While degree correlations are known to play a crucial role for spreading phenomena in networks, their impact on the propagation speed has hardly been understood. Here we investigate a tunable spreading model on scale-free networks and show that the propagation becomes slow in positively (negatively)...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Physical Society
2012
|
Online Access: | http://hdl.handle.net/1721.1/72101 |
Summary: | While degree correlations are known to play a crucial role for spreading phenomena in networks, their impact on the propagation speed has hardly been understood. Here we investigate a tunable spreading model on scale-free networks and show that the propagation becomes slow in positively (negatively) correlated networks if nodes with a high connectivity locally accelerate (decelerate) the propagation. Examining the efficient paths offers a coherent explanation for this result, while the k-core decomposition reveals the dependence of the nodal spreading efficiency on the correlation. Our findings should open new pathways to delicately control real-world spreading processes. |
---|