Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background

We describe a general approach to detection of transient gravitational-wave signals in the presence of non-Gaussian background noise. We prove that under quite general conditions, the ratio of the likelihood of observed data to contain a signal to the likelihood of it being a noise fluctuation provi...

Full description

Bibliographic Details
Main Authors: Biswas, Rahul, Brady, Patrick R., Burguet-Castell, Jordi, Cannon, K. C., Clayton, Jessica, Dietz, Alexander, Fotopoulos, Nickolas, Goggin, Lisa M., Keppel, D. G., Pankow, Chris, Price, Larry R., Vaulin, Ruslan
Other Authors: MIT Kavli Institute for Astrophysics and Space Research
Format: Article
Language:en_US
Published: American Physical Society 2012
Online Access:http://hdl.handle.net/1721.1/72139
_version_ 1826206016464748544
author Biswas, Rahul
Brady, Patrick R.
Burguet-Castell, Jordi
Cannon, K. C.
Clayton, Jessica
Dietz, Alexander
Fotopoulos, Nickolas
Goggin, Lisa M.
Keppel, D. G.
Pankow, Chris
Price, Larry R.
Vaulin, Ruslan
author2 MIT Kavli Institute for Astrophysics and Space Research
author_facet MIT Kavli Institute for Astrophysics and Space Research
Biswas, Rahul
Brady, Patrick R.
Burguet-Castell, Jordi
Cannon, K. C.
Clayton, Jessica
Dietz, Alexander
Fotopoulos, Nickolas
Goggin, Lisa M.
Keppel, D. G.
Pankow, Chris
Price, Larry R.
Vaulin, Ruslan
author_sort Biswas, Rahul
collection MIT
description We describe a general approach to detection of transient gravitational-wave signals in the presence of non-Gaussian background noise. We prove that under quite general conditions, the ratio of the likelihood of observed data to contain a signal to the likelihood of it being a noise fluctuation provides optimal ranking for the candidate events found in an experiment. The likelihood-ratio ranking allows us to combine different kinds of data into a single analysis. We apply the general framework to the problem of unifying the results of independent experiments and the problem of accounting for non-Gaussian artifacts in the searches for gravitational waves from compact binary coalescence in LIGO data. We show analytically and confirm through simulations that in both cases applying the likelihood-ratio ranking results in an improved analysis.
first_indexed 2024-09-23T13:22:40Z
format Article
id mit-1721.1/72139
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T13:22:40Z
publishDate 2012
publisher American Physical Society
record_format dspace
spelling mit-1721.1/721392022-10-01T14:50:42Z Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background Biswas, Rahul Brady, Patrick R. Burguet-Castell, Jordi Cannon, K. C. Clayton, Jessica Dietz, Alexander Fotopoulos, Nickolas Goggin, Lisa M. Keppel, D. G. Pankow, Chris Price, Larry R. Vaulin, Ruslan MIT Kavli Institute for Astrophysics and Space Research LIGO (Observatory : Massachusetts Institute of Technology) Vaulin, Ruslan Vaulin, Ruslan We describe a general approach to detection of transient gravitational-wave signals in the presence of non-Gaussian background noise. We prove that under quite general conditions, the ratio of the likelihood of observed data to contain a signal to the likelihood of it being a noise fluctuation provides optimal ranking for the candidate events found in an experiment. The likelihood-ratio ranking allows us to combine different kinds of data into a single analysis. We apply the general framework to the problem of unifying the results of independent experiments and the problem of accounting for non-Gaussian artifacts in the searches for gravitational waves from compact binary coalescence in LIGO data. We show analytically and confirm through simulations that in both cases applying the likelihood-ratio ranking results in an improved analysis. National Science Foundation (U.S.). (Grant number PHY-0600953) National Science Foundation (U.S.). (Grant number PHY-0923409) Laser Interferometer Gravitational Wave Observatory 2012-08-15T14:02:20Z 2012-08-15T14:02:20Z 2012-06 2012-02 Article http://purl.org/eprint/type/JournalArticle 1550-7998 1089-4918 http://hdl.handle.net/1721.1/72139 Biswas, Rahul et al. “Likelihood-ratio Ranking of Gravitational-wave Candidates in a non-Gaussian Background.” Physical Review D 85.12 (2012). © 2012 American Physical Society en_US http://dx.doi.org/10.1103/PhysRevD.85.122008 Physical Review D Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf American Physical Society APS
spellingShingle Biswas, Rahul
Brady, Patrick R.
Burguet-Castell, Jordi
Cannon, K. C.
Clayton, Jessica
Dietz, Alexander
Fotopoulos, Nickolas
Goggin, Lisa M.
Keppel, D. G.
Pankow, Chris
Price, Larry R.
Vaulin, Ruslan
Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background
title Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background
title_full Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background
title_fullStr Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background
title_full_unstemmed Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background
title_short Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background
title_sort likelihood ratio ranking of gravitational wave candidates in a non gaussian background
url http://hdl.handle.net/1721.1/72139
work_keys_str_mv AT biswasrahul likelihoodratiorankingofgravitationalwavecandidatesinanongaussianbackground
AT bradypatrickr likelihoodratiorankingofgravitationalwavecandidatesinanongaussianbackground
AT burguetcastelljordi likelihoodratiorankingofgravitationalwavecandidatesinanongaussianbackground
AT cannonkc likelihoodratiorankingofgravitationalwavecandidatesinanongaussianbackground
AT claytonjessica likelihoodratiorankingofgravitationalwavecandidatesinanongaussianbackground
AT dietzalexander likelihoodratiorankingofgravitationalwavecandidatesinanongaussianbackground
AT fotopoulosnickolas likelihoodratiorankingofgravitationalwavecandidatesinanongaussianbackground
AT gogginlisam likelihoodratiorankingofgravitationalwavecandidatesinanongaussianbackground
AT keppeldg likelihoodratiorankingofgravitationalwavecandidatesinanongaussianbackground
AT pankowchris likelihoodratiorankingofgravitationalwavecandidatesinanongaussianbackground
AT pricelarryr likelihoodratiorankingofgravitationalwavecandidatesinanongaussianbackground
AT vaulinruslan likelihoodratiorankingofgravitationalwavecandidatesinanongaussianbackground