Mechanism for recombination of radiation-induced point defects at interphase boundaries
Interfaces play a critical role in the extraordinary resistance to irradiation damage in nanostructured materials. Atomistic simulations are performed to examine defect production and recovery at incoherent interphase boundaries with different atomic structures. The interstitials produced during cas...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Physical Society
2012
|
Online Access: | http://hdl.handle.net/1721.1/72459 https://orcid.org/0000-0003-3949-0441 |
Summary: | Interfaces play a critical role in the extraordinary resistance to irradiation damage in nanostructured materials. Atomistic simulations are performed to examine defect production and recovery at incoherent interphase boundaries with different atomic structures. The interstitials produced during cascades and absorbed by the interface are subsequently observed to emit from the interface to annihilate residual vacancies in the nearby bulk. These results indicate that interstitials do not “lose their identity” when absorbed at interfaces regardless of the extent of delocalization at boundaries. |
---|