Voronoi Coverage of Non-Convex Environments with a Group of Networked Robots

This paper presents a solution to decentralized Voronoi coverage in non-convex polygonal environments. We show that complications arise when existing approaches to Voronoi coverage are applied for deploying a group of robots in non-convex environments. We present an algorithm that is guaranteed to c...

Full description

Bibliographic Details
Main Authors: Breitenmoser, Andreas, Schwager, Mac, Metzger, Jean-Claude, Siegwart, Roland, Rus, Daniela L.
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers (IEEE) 2012
Online Access:http://hdl.handle.net/1721.1/72498
https://orcid.org/0000-0001-5473-3566
Description
Summary:This paper presents a solution to decentralized Voronoi coverage in non-convex polygonal environments. We show that complications arise when existing approaches to Voronoi coverage are applied for deploying a group of robots in non-convex environments. We present an algorithm that is guaranteed to converge to a local optimum. Our algorithm combines classical Voronoi coverage with the Lloyd algorithm and the local path planning algorithm TangentBug to compute the motion of the robots around obstacles and corners. We present the algorithm and prove convergence and optimality. We also discuss experimental results from an implementation with five robots.