CPHASH: A cache-partitioned hash table
CPHash is a concurrent hash table for multicore processors. CPHash partitions its table across the caches of cores and uses message passing to transfer lookups/inserts to a partition. CPHash's message passing avoids the need for locks, pipelines batches of asynchronous messages, and packs multi...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Association for Computing Machinery (ACM)
2012
|
Online Access: | http://hdl.handle.net/1721.1/72613 https://orcid.org/0000-0003-0238-2703 https://orcid.org/0000-0001-7098-586X |
Summary: | CPHash is a concurrent hash table for multicore processors. CPHash partitions its table across the caches of cores and uses message passing to transfer lookups/inserts to a partition. CPHash's message passing avoids the need for locks, pipelines batches of asynchronous messages, and packs multiple messages into a single cache line transfer. Experiments on a 80-core machine with 2 hardware threads per core show that CPHash has ~1.6x higher throughput than a hash table implemented using fine-grained locks. An analysis shows that CPHash wins because it experiences fewer cache misses and its cache misses are less expensive, because of less contention for the on-chip interconnect and DRAM. CPServer, a key/value cache server using CPHash, achieves ~5% higher throughput than a key/value cache server that uses a hash table with fine-grained locks, but both achieve better throughput and scalability than memcached. The throughput of CPHash and CPServer also scale near-linearly with the number of cores. |
---|