High-temperature performance and broad continuous tunability of terahertz quantum-cascade lasers

We demonstrate a terahertz quantum-cascade laser (QCL) operating significantly above the temperature of hv/kB, which had so-far been been an empirical limitation for the maximum operating temperature of these devices. With a design that employs a new scattering-assisted injection scheme, a 1.8 THz Q...

Full description

Bibliographic Details
Main Authors: Chan, Chun Wang Ivan, Hu, Qing, Qin, Qi, Kumar, Sushil, Reno, John L.
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:en_US
Published: SPIE 2012
Online Access:http://hdl.handle.net/1721.1/73189
https://orcid.org/0000-0002-5100-3709
https://orcid.org/0000-0003-1982-4053
Description
Summary:We demonstrate a terahertz quantum-cascade laser (QCL) operating significantly above the temperature of hv/kB, which had so-far been been an empirical limitation for the maximum operating temperature of these devices. With a design that employs a new scattering-assisted injection scheme, a 1.8 THz QCL operating up to a temperature of 1.9hv/kB (163 K) is realized with more than 3 mW of peak optical power output at 150 K. We also demonstrate continuous tunability over a frequency range of 137 GHz of a single-mode QCL operating at 3.8 THz in metal-metal waveguides. A unique concept of altering the lateral mode profile of the "wire laser" waveguide geometry was implemented to achieve tuning despite the strong mode confinement of metal-metal waveguides at terahertz frequencies.