Coupled Growth and Division of Model Protocell Membranes
The generation of synthetic forms of cellular life requires solutions to the problem of how biological processes such as cyclic growth and division could emerge from purely physical and chemical systems. Small unilamellar fatty acid vesicles grow when fed with fatty acid micelles and can be forced t...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Chemical Society (ACS)
2012
|
Online Access: | http://hdl.handle.net/1721.1/73199 |
_version_ | 1826194950946029568 |
---|---|
author | Zhu, Ting Szostak, Jack W. |
author2 | Harvard University--MIT Division of Health Sciences and Technology |
author_facet | Harvard University--MIT Division of Health Sciences and Technology Zhu, Ting Szostak, Jack W. |
author_sort | Zhu, Ting |
collection | MIT |
description | The generation of synthetic forms of cellular life requires solutions to the problem of how biological processes such as cyclic growth and division could emerge from purely physical and chemical systems. Small unilamellar fatty acid vesicles grow when fed with fatty acid micelles and can be forced to divide by extrusion, but this artificial division process results in significant loss of protocell contents during each division cycle. Here we describe a simple and efficient pathway for model protocell membrane growth and division. The growth of large multilamellar fatty acid vesicles fed with fatty acid micelles, in a solution where solute permeation across the membranes is slow, results in the transformation of initially spherical vesicles into long thread-like vesicles, a process driven by the transient imbalance between surface area and volume growth. Modest shear forces are then sufficient to cause the thread-like vesicles to divide into multiple daughter vesicles without loss of internal contents. In an environment of gentle shear, protocell growth and division are thus coupled processes. We show that model protocells can proceed through multiple cycles of reproduction. Encapsulated RNA molecules, representing a primitive genome, are distributed to the daughter vesicles. Our observations bring us closer to the laboratory synthesis of a complete protocell consisting of a self-replicating genome and a self-replicating membrane compartment. In addition, the robustness and simplicity of this pathway suggests that similar processes might have occurred under the prebiotic conditions of the early Earth. |
first_indexed | 2024-09-23T10:04:24Z |
format | Article |
id | mit-1721.1/73199 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T10:04:24Z |
publishDate | 2012 |
publisher | American Chemical Society (ACS) |
record_format | dspace |
spelling | mit-1721.1/731992022-09-30T18:44:01Z Coupled Growth and Division of Model Protocell Membranes Zhu, Ting Szostak, Jack W. Harvard University--MIT Division of Health Sciences and Technology Massachusetts Institute of Technology. Department of Biology Zhu, Ting Szostak, Jack W. The generation of synthetic forms of cellular life requires solutions to the problem of how biological processes such as cyclic growth and division could emerge from purely physical and chemical systems. Small unilamellar fatty acid vesicles grow when fed with fatty acid micelles and can be forced to divide by extrusion, but this artificial division process results in significant loss of protocell contents during each division cycle. Here we describe a simple and efficient pathway for model protocell membrane growth and division. The growth of large multilamellar fatty acid vesicles fed with fatty acid micelles, in a solution where solute permeation across the membranes is slow, results in the transformation of initially spherical vesicles into long thread-like vesicles, a process driven by the transient imbalance between surface area and volume growth. Modest shear forces are then sufficient to cause the thread-like vesicles to divide into multiple daughter vesicles without loss of internal contents. In an environment of gentle shear, protocell growth and division are thus coupled processes. We show that model protocells can proceed through multiple cycles of reproduction. Encapsulated RNA molecules, representing a primitive genome, are distributed to the daughter vesicles. Our observations bring us closer to the laboratory synthesis of a complete protocell consisting of a self-replicating genome and a self-replicating membrane compartment. In addition, the robustness and simplicity of this pathway suggests that similar processes might have occurred under the prebiotic conditions of the early Earth. Exobiology Program (U.S.) (Grant EXB02- 0031-0018) United States. National Aeronautics and Space Administration (Exobiology Program) (Grant EXB02-0031-0018) Howard Hughes Medical Institute (Investigator) 2012-09-27T13:02:44Z 2012-09-27T13:02:44Z 2009-03 2009-02 Article http://purl.org/eprint/type/JournalArticle 0002-7863 1520-5126 http://hdl.handle.net/1721.1/73199 Zhu, Ting F., and Jack W. Szostak. “Coupled Growth and Division of Model Protocell Membranes.” Journal of the American Chemical Society 131.15 (2009): 5705–5713. © 2009 American Chemical Society en_US http://dx.doi.org/10.1021/ja900919c Journal of the American Chemical Society Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf American Chemical Society (ACS) ACS |
spellingShingle | Zhu, Ting Szostak, Jack W. Coupled Growth and Division of Model Protocell Membranes |
title | Coupled Growth and Division of Model Protocell Membranes |
title_full | Coupled Growth and Division of Model Protocell Membranes |
title_fullStr | Coupled Growth and Division of Model Protocell Membranes |
title_full_unstemmed | Coupled Growth and Division of Model Protocell Membranes |
title_short | Coupled Growth and Division of Model Protocell Membranes |
title_sort | coupled growth and division of model protocell membranes |
url | http://hdl.handle.net/1721.1/73199 |
work_keys_str_mv | AT zhuting coupledgrowthanddivisionofmodelprotocellmembranes AT szostakjackw coupledgrowthanddivisionofmodelprotocellmembranes |