Delay-throughput tradeoff for streaming over blockage channels with delayed feedback

We focus on the problem of real-time streaming over a blockage channel with long feedback delay, as arises in real-time satellite communication from a comm-on-the-move (COTM) terminal. For this problem, we introduce a definition of delay that captures the real-time nature of the problem, which we sh...

Full description

Bibliographic Details
Main Authors: Yao, Huan, Kochman, Yuval, Wornell, Gregory W.
Other Authors: Lincoln Laboratory
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers (IEEE) 2012
Online Access:http://hdl.handle.net/1721.1/73552
https://orcid.org/0000-0001-9166-4758
Description
Summary:We focus on the problem of real-time streaming over a blockage channel with long feedback delay, as arises in real-time satellite communication from a comm-on-the-move (COTM) terminal. For this problem, we introduce a definition of delay that captures the real-time nature of the problem, which we show grows at least as fast as O(log(k)) for memoryless channels, where k corresponds to the number of packets in the transmission. Moreover, we show that a tradeoff exists between this delay and a natural notion of throughput that captures the bandwidth requirements of the communication. We develop and analyze an efficient “multi-burst” transmission protocol for achieving good delay-throughput tradeoffs within this framework, which we show can be augmented with coding for additional performance gains. Simulations validate the new protocols on channels with and without memory.