Degree fluctuations and the convergence time of consensus algorithms

We consider a consensus algorithm in which every node in a time-varying undirected connected graph assigns equal weight to each of its neighbors. Under the assumption that the degree of any given node is constant in time, we show that the algorithm achieves consensus within a given accuracy ∈ on n n...

Full description

Bibliographic Details
Main Author: Tsitsiklis, John N.
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers (IEEE) 2012
Online Access:http://hdl.handle.net/1721.1/73573
https://orcid.org/0000-0003-2658-8239
Description
Summary:We consider a consensus algorithm in which every node in a time-varying undirected connected graph assigns equal weight to each of its neighbors. Under the assumption that the degree of any given node is constant in time, we show that the algorithm achieves consensus within a given accuracy ∈ on n nodes in time O(n[superscript 3]ln(n=∈)). Because there is a direct relation between consensus algorithms in time-varying environments and inhomogeneous random walks, our result also translates into a general statement on such random walks. Moreover, we give simple proofs that the convergence time becomes exponentially large in the number of nodes n under slight relaxations of the above assumptions. We prove that exponential convergence time is possible for consensus algorithms on fixed directed graphs, and we use an example of Cao, Spielman, and Morse to give a simple argument that the same is possible if the constant degrees assumption is even slightly relaxed.