A generative approach for image-based modeling of tumor growth

22nd International Conference, IPMI 2011, Kloster Irsee, Germany, July 3-8, 2011. Proceedings

Bibliographic Details
Main Authors: Menze, Bjoern Holger, Leemput, Koen Van, Honkela, Antti, Konukoglu, Ender, Weber, Marc-Andre, Ayache, Nicholas, Golland, Polina
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Article
Language:en_US
Published: Springer Berlin / Heidelberg 2012
Online Access:http://hdl.handle.net/1721.1/73872
https://orcid.org/0000-0003-2516-731X
_version_ 1826202881131282432
author Menze, Bjoern Holger
Leemput, Koen Van
Honkela, Antti
Konukoglu, Ender
Weber, Marc-Andre
Ayache, Nicholas
Golland, Polina
author2 Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
author_facet Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Menze, Bjoern Holger
Leemput, Koen Van
Honkela, Antti
Konukoglu, Ender
Weber, Marc-Andre
Ayache, Nicholas
Golland, Polina
author_sort Menze, Bjoern Holger
collection MIT
description 22nd International Conference, IPMI 2011, Kloster Irsee, Germany, July 3-8, 2011. Proceedings
first_indexed 2024-09-23T12:24:09Z
format Article
id mit-1721.1/73872
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T12:24:09Z
publishDate 2012
publisher Springer Berlin / Heidelberg
record_format dspace
spelling mit-1721.1/738722022-09-28T07:54:37Z A generative approach for image-based modeling of tumor growth Menze, Bjoern Holger Leemput, Koen Van Honkela, Antti Konukoglu, Ender Weber, Marc-Andre Ayache, Nicholas Golland, Polina Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Menze, Bjoern Holger Leemput, Koen Van Golland, Polina 22nd International Conference, IPMI 2011, Kloster Irsee, Germany, July 3-8, 2011. Proceedings Extensive imaging is routinely used in brain tumor patients to monitor the state of the disease and to evaluate therapeutic options. A large number of multi-modal and multi-temporal image volumes is acquired in standard clinical cases, requiring new approaches for comprehensive integration of information from different image sources and different time points. In this work we propose a joint generative model of tumor growth and of image observation that naturally handles multi-modal and longitudinal data. We use the model for analyzing imaging data in patients with glioma. The tumor growth model is based on a reaction-diffusion framework. Model personalization relies only on a forward model for the growth process and on image likelihood. We take advantage of an adaptive sparse grid approximation for efficient inference via Markov Chain Monte Carlo sampling. The approach can be used for integrating information from different multi-modal imaging protocols and can easily be adapted to other tumor growth models. German Academy of Sciences Leopoldina (Fellowship Programme LPDS 2009-10) Academy of Finland (133611) National Institutes of Health (U.S.) (NIBIB NAMIC U54-EB005149) National Institutes of Health (U.S.) (NCRR NAC P41- RR13218) National Institutes of Health (U.S.) (NINDS R01-NS051826) National Institutes of Health (U.S.) (NIH R01-NS052585) National Institutes of Health (U.S.) (NIH R01-EB006758) National Institutes of Health (U.S.) (NIH R01-EB009051) National Institutes of Health (U.S.) (NIH P41-RR014075) National Science Foundation (U.S.) (CAREER Award 0642971) 2012-10-10T20:26:44Z 2012-10-10T20:26:44Z 2011-06 2011-07 Article http://purl.org/eprint/type/ConferencePaper 978-3-642-22091-3 http://hdl.handle.net/1721.1/73872 Menze, Bjoern H. et al. “A Generative Approach for Image-Based Modeling of Tumor Growth.” Information Processing in Medical Imaging. Ed. Gábor Székely & Horst K. Hahn. LNCS Vol. 6801. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. 735–747. https://orcid.org/0000-0003-2516-731X en_US http://dx.doi.org/10.1007/978-3-642-22092-0_60 Information Processing in Medical Imaging Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/ application/pdf Springer Berlin / Heidelberg Other University Web Domain
spellingShingle Menze, Bjoern Holger
Leemput, Koen Van
Honkela, Antti
Konukoglu, Ender
Weber, Marc-Andre
Ayache, Nicholas
Golland, Polina
A generative approach for image-based modeling of tumor growth
title A generative approach for image-based modeling of tumor growth
title_full A generative approach for image-based modeling of tumor growth
title_fullStr A generative approach for image-based modeling of tumor growth
title_full_unstemmed A generative approach for image-based modeling of tumor growth
title_short A generative approach for image-based modeling of tumor growth
title_sort generative approach for image based modeling of tumor growth
url http://hdl.handle.net/1721.1/73872
https://orcid.org/0000-0003-2516-731X
work_keys_str_mv AT menzebjoernholger agenerativeapproachforimagebasedmodelingoftumorgrowth
AT leemputkoenvan agenerativeapproachforimagebasedmodelingoftumorgrowth
AT honkelaantti agenerativeapproachforimagebasedmodelingoftumorgrowth
AT konukogluender agenerativeapproachforimagebasedmodelingoftumorgrowth
AT webermarcandre agenerativeapproachforimagebasedmodelingoftumorgrowth
AT ayachenicholas agenerativeapproachforimagebasedmodelingoftumorgrowth
AT gollandpolina agenerativeapproachforimagebasedmodelingoftumorgrowth
AT menzebjoernholger generativeapproachforimagebasedmodelingoftumorgrowth
AT leemputkoenvan generativeapproachforimagebasedmodelingoftumorgrowth
AT honkelaantti generativeapproachforimagebasedmodelingoftumorgrowth
AT konukogluender generativeapproachforimagebasedmodelingoftumorgrowth
AT webermarcandre generativeapproachforimagebasedmodelingoftumorgrowth
AT ayachenicholas generativeapproachforimagebasedmodelingoftumorgrowth
AT gollandpolina generativeapproachforimagebasedmodelingoftumorgrowth