Ultrahigh speed volumetric ophthalmic OCT imaging at 850nm and 1050nm

The performance and imaging characteristics of ultrahigh speed ophthalmic optical coherence tomography (OCT) are investigated. In vivo imaging results are obtained at 850nm and 1050nm using different configurations of spectral and swept source / Fourier domain OCT. A spectral / Fourier domain instru...

Full description

Bibliographic Details
Main Authors: Potsaid, Benjamin M., Liu, Jonathan Jaoshin, Manjunath, Varsha, Gorczynska, Iwona, Srinivasan, Vivek J., Jiang, James, Barry, Scott, Cable, Alex E., Duker, Jay S., Fujimoto, James G.
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:en_US
Published: SPIE 2012
Online Access:http://hdl.handle.net/1721.1/73961
https://orcid.org/0000-0002-0828-4357
Description
Summary:The performance and imaging characteristics of ultrahigh speed ophthalmic optical coherence tomography (OCT) are investigated. In vivo imaging results are obtained at 850nm and 1050nm using different configurations of spectral and swept source / Fourier domain OCT. A spectral / Fourier domain instrument using a high speed CMOS linescan camera with SLD light source centered at 850nm achieves speeds of ~91,000 axial scans per second with ~3μm axial resolution in tissue. A spectral / Fourier domain instrument using an InGaAs linescan camera with SLD light source centered at 1050nm achieves ~47,000 axial scans per second with ~7μm resolution in tissue. A swept source instrument using a novel wavelength swept laser light source centered at 1050nm achieves 100,000 axial scans per second. Retinal diseases seen in the clinical setting are imaged using the 91kHz 850nm CMOS camera and 47kHz 1050nm InGaAs camera based instruments to investigate the combined effects of varying speed, axial resolution, center wavelength, and instrument sensitivity on image quality. The novel 1050nm swept source / Fourier domain instrument using a recently developed commercially available short cavity laser source images at 100,000 axial scans per second and is demonstrated in the normal retina. The dense 3D volumetric data sets obtained with ultrahigh speed OCT promise to improve reproducibility of quantitative measurements, enabling early diagnosis as well as more sensitive assessment of disease progression and response to therapy.