Detecting and Understanding the Roles of Nitric Oxide in biology

We are pursuing a dual strategy for investigating the chemistry of nitric oxide as a biological signaling agent. In one approach, metal-based fluorescent sensors for the detection of NO in living cells are evaluated, and a sensor based on a copper fluorescein complex has proved to be a valuable lead...

Full description

Bibliographic Details
Main Authors: Tonzetich, Zachary J., McQuade, Lindsey E., Lippard, Stephen J.
Other Authors: Massachusetts Institute of Technology. Department of Chemistry
Format: Article
Language:en_US
Published: American Chemical Society (ACS) 2012
Online Access:http://hdl.handle.net/1721.1/74072
https://orcid.org/0000-0002-2693-4982
Description
Summary:We are pursuing a dual strategy for investigating the chemistry of nitric oxide as a biological signaling agent. In one approach, metal-based fluorescent sensors for the detection of NO in living cells are evaluated, and a sensor based on a copper fluorescein complex has proved to be a valuable lead compound. Sensors of this class permit identification of NO from both inducible and constitutive forms of nitric oxide synthase and facilitate investigation of different NO functions in response to external stimuli. In the other approach, we employ synthetic model complexes of iron−sulfur clusters to probe their reactivity toward nitric oxide as biomimics of the active sites of iron−sulfur proteins. Our studies reveal that NO disassembles the Fe−S clusters to form dinitrosyl iron complexes.