FDSOI Process Technology for Subthreshold-Operation Ultralow-Power Electronics
Ultralow-power electronics will expand the technological capability of handheld and wireless devices by dramatically improving battery life and portability. In addition to innovative low-power design techniques, a complementary process technology is required to enable the highest performance devices...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2012
|
Online Access: | http://hdl.handle.net/1721.1/74123 |
Summary: | Ultralow-power electronics will expand the technological capability of handheld and wireless devices by dramatically improving battery life and portability. In addition to innovative low-power design techniques, a complementary process technology is required to enable the highest performance devices possible while maintaining extremely low power consumption. Transistors optimized for subthreshold operation at 0.3 V may achieve a 97% reduction in switching energy compared to conventional transistors. The process technology described in this article takes advantage of the capacitance and performance benefits of thin-body silicon-on-insulator devices, combined with a workfunction engineered mid-gap metal gate. |
---|