Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer

Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation[superscript 1, 2]. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies h...

Full description

Bibliographic Details
Main Authors: Possemato, Richard, Marks, Kevin M., Kim, Dohoon, Birsoy, Kivanc, Sethumadhavan, Shalini, Woo, Hin-Koon, Jang, Hyun G., Jha, Abhishek K., Chen, Walter W., Barrett, Francesca G., Stransky, Nicolas, Tsun, Zhi-Yang, Cowley, Glenn S., Barretina, Jordi, Kalaany, Nada Y., Hsu, Peggy P., Ottina, Kathleen, Chan, Albert M., Yuan, Bingbing B., Garraway, Levi A., Root, David E., Mino-Kenudson, Mari, Brachtel, Elena F., Driggers, Edward M., Shaul, Yoav, Pacold, Michael Edward, Sabatini, David
Other Authors: Massachusetts Institute of Technology. Department of Biology
Format: Article
Language:en_US
Published: Nature Publishing Group 2012
Online Access:http://hdl.handle.net/1721.1/74552
https://orcid.org/0000-0003-3688-2378
https://orcid.org/0000-0002-2401-0030
https://orcid.org/0000-0002-7043-5013
https://orcid.org/0000-0002-1446-7256
Description
Summary:Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation[superscript 1, 2]. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumour suppressor genes[superscript 3]. Here we developed a method for identifying novel cancer targets via negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in the mouse. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumorigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of oestrogen receptor (ER)-negative breast cancers. PHGDH catalyses the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have increased serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not in those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of α-ketoglutarate, another output of the pathway and a tricarboxylic acid (TCA) cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH overexpression and demonstrate the utility of in vivo negative-selection RNAi screens for finding potential anticancer targets.