Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer

Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation[superscript 1, 2]. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies h...

Full description

Bibliographic Details
Main Authors: Possemato, Richard, Marks, Kevin M., Kim, Dohoon, Birsoy, Kivanc, Sethumadhavan, Shalini, Woo, Hin-Koon, Jang, Hyun G., Jha, Abhishek K., Chen, Walter W., Barrett, Francesca G., Stransky, Nicolas, Tsun, Zhi-Yang, Cowley, Glenn S., Barretina, Jordi, Kalaany, Nada Y., Hsu, Peggy P., Ottina, Kathleen, Chan, Albert M., Yuan, Bingbing B., Garraway, Levi A., Root, David E., Mino-Kenudson, Mari, Brachtel, Elena F., Driggers, Edward M., Shaul, Yoav, Pacold, Michael Edward, Sabatini, David
Other Authors: Massachusetts Institute of Technology. Department of Biology
Format: Article
Language:en_US
Published: Nature Publishing Group 2012
Online Access:http://hdl.handle.net/1721.1/74552
https://orcid.org/0000-0003-3688-2378
https://orcid.org/0000-0002-2401-0030
https://orcid.org/0000-0002-7043-5013
https://orcid.org/0000-0002-1446-7256
_version_ 1810999344781852672
author Possemato, Richard
Marks, Kevin M.
Kim, Dohoon
Birsoy, Kivanc
Sethumadhavan, Shalini
Woo, Hin-Koon
Jang, Hyun G.
Jha, Abhishek K.
Chen, Walter W.
Barrett, Francesca G.
Stransky, Nicolas
Tsun, Zhi-Yang
Cowley, Glenn S.
Barretina, Jordi
Kalaany, Nada Y.
Hsu, Peggy P.
Ottina, Kathleen
Chan, Albert M.
Yuan, Bingbing B.
Garraway, Levi A.
Root, David E.
Mino-Kenudson, Mari
Brachtel, Elena F.
Driggers, Edward M.
Shaul, Yoav
Pacold, Michael Edward
Sabatini, David
author2 Massachusetts Institute of Technology. Department of Biology
author_facet Massachusetts Institute of Technology. Department of Biology
Possemato, Richard
Marks, Kevin M.
Kim, Dohoon
Birsoy, Kivanc
Sethumadhavan, Shalini
Woo, Hin-Koon
Jang, Hyun G.
Jha, Abhishek K.
Chen, Walter W.
Barrett, Francesca G.
Stransky, Nicolas
Tsun, Zhi-Yang
Cowley, Glenn S.
Barretina, Jordi
Kalaany, Nada Y.
Hsu, Peggy P.
Ottina, Kathleen
Chan, Albert M.
Yuan, Bingbing B.
Garraway, Levi A.
Root, David E.
Mino-Kenudson, Mari
Brachtel, Elena F.
Driggers, Edward M.
Shaul, Yoav
Pacold, Michael Edward
Sabatini, David
author_sort Possemato, Richard
collection MIT
description Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation[superscript 1, 2]. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumour suppressor genes[superscript 3]. Here we developed a method for identifying novel cancer targets via negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in the mouse. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumorigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of oestrogen receptor (ER)-negative breast cancers. PHGDH catalyses the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have increased serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not in those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of α-ketoglutarate, another output of the pathway and a tricarboxylic acid (TCA) cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH overexpression and demonstrate the utility of in vivo negative-selection RNAi screens for finding potential anticancer targets.
first_indexed 2024-09-23T14:59:22Z
format Article
id mit-1721.1/74552
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T14:59:22Z
publishDate 2012
publisher Nature Publishing Group
record_format dspace
spelling mit-1721.1/745522022-09-29T11:53:08Z Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer Possemato, Richard Marks, Kevin M. Kim, Dohoon Birsoy, Kivanc Sethumadhavan, Shalini Woo, Hin-Koon Jang, Hyun G. Jha, Abhishek K. Chen, Walter W. Barrett, Francesca G. Stransky, Nicolas Tsun, Zhi-Yang Cowley, Glenn S. Barretina, Jordi Kalaany, Nada Y. Hsu, Peggy P. Ottina, Kathleen Chan, Albert M. Yuan, Bingbing B. Garraway, Levi A. Root, David E. Mino-Kenudson, Mari Brachtel, Elena F. Driggers, Edward M. Shaul, Yoav Pacold, Michael Edward Sabatini, David Massachusetts Institute of Technology. Department of Biology Whitehead Institute for Biomedical Research Koch Institute for Integrative Cancer Research at MIT Possemato, Richard Shaul, Yoav D. Pacold, Michael E. Kim, Dohoon Birsoy, Kivanc Chen, Walter W. Tsun, Zhi-Yang Kalaany, Nada Y. Hsu, Peggy P. Ottina, Kathleen Chan, Albert M. Yuan, Bingbing B. Sabatini, David M. Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation[superscript 1, 2]. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumour suppressor genes[superscript 3]. Here we developed a method for identifying novel cancer targets via negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in the mouse. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumorigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of oestrogen receptor (ER)-negative breast cancers. PHGDH catalyses the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have increased serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not in those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of α-ketoglutarate, another output of the pathway and a tricarboxylic acid (TCA) cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH overexpression and demonstrate the utility of in vivo negative-selection RNAi screens for finding potential anticancer targets. Susan G. Komen Breast Cancer Foundation (Fellowship) Life Sciences Research Foundation (Fellowship) W. M. Keck Foundation David H. Koch Cancer Research Fund Alexander and Margaret Stewart Trust National Institutes of Health (U.S.) (Grant CA103866) 2012-11-01T18:41:15Z 2012-11-01T18:41:15Z 2011-08 2010-10 Article http://purl.org/eprint/type/JournalArticle 0028-0836 1476-4687 http://hdl.handle.net/1721.1/74552 Possemato, Richard et al. “Functional Genomics Reveal That the Serine Synthesis Pathway Is Essential in Breast Cancer.” Nature 476.7360 (2011): 346–350. https://orcid.org/0000-0003-3688-2378 https://orcid.org/0000-0002-2401-0030 https://orcid.org/0000-0002-7043-5013 https://orcid.org/0000-0002-1446-7256 en_US http://dx.doi.org/10.1038/nature10350 Nature Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/ application/pdf Nature Publishing Group PMC
spellingShingle Possemato, Richard
Marks, Kevin M.
Kim, Dohoon
Birsoy, Kivanc
Sethumadhavan, Shalini
Woo, Hin-Koon
Jang, Hyun G.
Jha, Abhishek K.
Chen, Walter W.
Barrett, Francesca G.
Stransky, Nicolas
Tsun, Zhi-Yang
Cowley, Glenn S.
Barretina, Jordi
Kalaany, Nada Y.
Hsu, Peggy P.
Ottina, Kathleen
Chan, Albert M.
Yuan, Bingbing B.
Garraway, Levi A.
Root, David E.
Mino-Kenudson, Mari
Brachtel, Elena F.
Driggers, Edward M.
Shaul, Yoav
Pacold, Michael Edward
Sabatini, David
Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer
title Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer
title_full Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer
title_fullStr Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer
title_full_unstemmed Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer
title_short Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer
title_sort functional genomics reveals serine synthesis is essential in phgdh amplified breast cancer
url http://hdl.handle.net/1721.1/74552
https://orcid.org/0000-0003-3688-2378
https://orcid.org/0000-0002-2401-0030
https://orcid.org/0000-0002-7043-5013
https://orcid.org/0000-0002-1446-7256
work_keys_str_mv AT possematorichard functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT markskevinm functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT kimdohoon functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT birsoykivanc functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT sethumadhavanshalini functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT woohinkoon functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT janghyung functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT jhaabhishekk functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT chenwalterw functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT barrettfrancescag functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT stranskynicolas functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT tsunzhiyang functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT cowleyglenns functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT barretinajordi functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT kalaanynaday functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT hsupeggyp functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT ottinakathleen functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT chanalbertm functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT yuanbingbingb functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT garrawaylevia functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT rootdavide functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT minokenudsonmari functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT brachtelelenaf functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT driggersedwardm functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT shaulyoav functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT pacoldmichaeledward functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer
AT sabatinidavid functionalgenomicsrevealsserinesynthesisisessentialinphgdhamplifiedbreastcancer