Emergent properties of heterogeneous decomposition networks

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.

Bibliographic Details
Main Author: Forney, David C., III
Other Authors: Daniel H. Rothman.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2012
Subjects:
Online Access:http://hdl.handle.net/1721.1/74995
_version_ 1826208991243403264
author Forney, David C., III
author2 Daniel H. Rothman.
author_facet Daniel H. Rothman.
Forney, David C., III
author_sort Forney, David C., III
collection MIT
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
first_indexed 2024-09-23T14:15:57Z
format Thesis
id mit-1721.1/74995
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T14:15:57Z
publishDate 2012
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/749952019-04-10T17:58:10Z Emergent properties of heterogeneous decomposition networks Forney, David C., III Daniel H. Rothman. Massachusetts Institute of Technology. Dept. of Mechanical Engineering. Massachusetts Institute of Technology. Dept. of Mechanical Engineering. Mechanical Engineering. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012. Cataloged from PDF version of thesis. Includes bibliographical references (p. 197-206). Organic matter respiration in natural ecosystems is controlled by a network of biologically, physically, and chemically driven processes. Often it is important to estimate total carbon flux from a degradation system or the decay of mass in the system as a function of time. Historically, mass dynamics are predicted by a compartmental model consisting of various degradation processes. This approach provides a complete picture of mass in the model system, but includes extra information unnecessary for modeling overall mass dynamics. Furthermore, these models quickly become highly parameterized and are kept tangible by reducing the number of processes and system states. This thesis suggests a different approach. I allow the degradation system to be inherently complex, but only consider a simple projection of the system necessary to characterize mass dynamics. Because decomposing organic matter is often described as a heterogeneous continuum which transforms and degrades over a wide range of rates, I model degradation as a network consisting of a large, quasi-continuum of states. The retention of carbon in the network is then estimated by using an eigenvalue projection to calculate the impulse response of the degradation system. For a continuous network, the impulse response can be expressed as a Laplace transform of an "exit rate function." I then pose and solve an inverse problem in order to identify the rates of exit of carbon from decomposing plant matter from across North America. Analysis of the calculated exit rate functions and their associated decay data suggest that plant matter decomposition can often be mathematically approximated by a continuum of parallel processes. Within this approximation, the solution of the inverse problem yields the discovery that exit rate functions are on average lognormal. This result suggests that the overall mass dynamics of complex decay networks often collapse to just two parameters: the mean and the variance of the order of magnitude of exit rates from the network. These parameters are then used to assess the effects of climate and litter chemistry on organic carbon turnover and on rate heterogeneity. I also use observed patterns to explain the effect of natural selection in microbial communities on degradation network kinetics. by David C. Forney, III. Ph.D. 2012-11-19T19:43:37Z 2012-11-19T19:43:37Z 2012 2012 Thesis http://hdl.handle.net/1721.1/74995 815429417 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 206 p. application/pdf Massachusetts Institute of Technology
spellingShingle Mechanical Engineering.
Forney, David C., III
Emergent properties of heterogeneous decomposition networks
title Emergent properties of heterogeneous decomposition networks
title_full Emergent properties of heterogeneous decomposition networks
title_fullStr Emergent properties of heterogeneous decomposition networks
title_full_unstemmed Emergent properties of heterogeneous decomposition networks
title_short Emergent properties of heterogeneous decomposition networks
title_sort emergent properties of heterogeneous decomposition networks
topic Mechanical Engineering.
url http://hdl.handle.net/1721.1/74995
work_keys_str_mv AT forneydavidciii emergentpropertiesofheterogeneousdecompositionnetworks