Efficient replication bypass of size-expanded DNA base pairs in bacterial cells

Author Manuscript 2012 September 06

Bibliographic Details
Main Authors: Delaney, James C., Gao, Jianmin, Liu, Haibo, Shrivastav, Nidhi, Essigmann, John M., Kool, Eric T.
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering
Format: Article
Language:en_US
Published: Wiley Blackwell 2012
Online Access:http://hdl.handle.net/1721.1/75427
https://orcid.org/0000-0001-6159-0778
https://orcid.org/0000-0002-2196-5691
_version_ 1826195398679592960
author Delaney, James C.
Gao, Jianmin
Liu, Haibo
Shrivastav, Nidhi
Essigmann, John M.
Kool, Eric T.
author2 Massachusetts Institute of Technology. Department of Biological Engineering
author_facet Massachusetts Institute of Technology. Department of Biological Engineering
Delaney, James C.
Gao, Jianmin
Liu, Haibo
Shrivastav, Nidhi
Essigmann, John M.
Kool, Eric T.
author_sort Delaney, James C.
collection MIT
description Author Manuscript 2012 September 06
first_indexed 2024-09-23T10:12:02Z
format Article
id mit-1721.1/75427
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T10:12:02Z
publishDate 2012
publisher Wiley Blackwell
record_format dspace
spelling mit-1721.1/754272022-09-30T19:32:52Z Efficient replication bypass of size-expanded DNA base pairs in bacterial cells Delaney, James C. Gao, Jianmin Liu, Haibo Shrivastav, Nidhi Essigmann, John M. Kool, Eric T. Massachusetts Institute of Technology. Department of Biological Engineering Massachusetts Institute of Technology. Department of Chemistry Delaney, James C. Shrivastav, Nidhi Essigmann, John M. Author Manuscript 2012 September 06 Supersize me! Size-expanded DNA bases (xDNA) are able to encode natural DNA sequences in replication. In vitro experiments with a DNA polymerase show nucleotide incorporation opposite the xDNA bases with correct pairing. In vivo experiments using E. coli show that two xDNA bases (xA and xC, see picture) encode the correct replication partners. National Institutes of Health (U.S.) (CA80024) National Institutes of Health (U.S.) (GM63587) Stanford Graduate Fellowship 2012-12-12T18:48:18Z 2012-12-12T18:48:18Z 2009-05 Article http://purl.org/eprint/type/JournalArticle 0044-8249 1521-3757 http://hdl.handle.net/1721.1/75427 Delaney, James C. et al. “Efficient Replication Bypass of Size-Expanded DNA Base Pairs in Bacterial Cells.” Angewandte Chemie International Edition 48.25 (2009): 4524–4527. https://orcid.org/0000-0001-6159-0778 https://orcid.org/0000-0002-2196-5691 en_US http://dx.doi.org/10.1002/anie.200805683 Angewandte Chemie Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/ application/pdf Wiley Blackwell PMC
spellingShingle Delaney, James C.
Gao, Jianmin
Liu, Haibo
Shrivastav, Nidhi
Essigmann, John M.
Kool, Eric T.
Efficient replication bypass of size-expanded DNA base pairs in bacterial cells
title Efficient replication bypass of size-expanded DNA base pairs in bacterial cells
title_full Efficient replication bypass of size-expanded DNA base pairs in bacterial cells
title_fullStr Efficient replication bypass of size-expanded DNA base pairs in bacterial cells
title_full_unstemmed Efficient replication bypass of size-expanded DNA base pairs in bacterial cells
title_short Efficient replication bypass of size-expanded DNA base pairs in bacterial cells
title_sort efficient replication bypass of size expanded dna base pairs in bacterial cells
url http://hdl.handle.net/1721.1/75427
https://orcid.org/0000-0001-6159-0778
https://orcid.org/0000-0002-2196-5691
work_keys_str_mv AT delaneyjamesc efficientreplicationbypassofsizeexpandeddnabasepairsinbacterialcells
AT gaojianmin efficientreplicationbypassofsizeexpandeddnabasepairsinbacterialcells
AT liuhaibo efficientreplicationbypassofsizeexpandeddnabasepairsinbacterialcells
AT shrivastavnidhi efficientreplicationbypassofsizeexpandeddnabasepairsinbacterialcells
AT essigmannjohnm efficientreplicationbypassofsizeexpandeddnabasepairsinbacterialcells
AT koolerict efficientreplicationbypassofsizeexpandeddnabasepairsinbacterialcells