Observations of Mg II Absorption near Z Similar to 1 Galaxies Selected from the Deep2 Redshift Survey

We study the frequency of Mg II absorption in the outer halos of galaxies at z = 0.6-1.4 (with median z = 0.87), using new spectra obtained of 10 background quasars with galaxy impact parameters of b < 100 kpc. The quasar sight lines were selected from the Sloan Digital Sky Survey DR6 QSO catalog...

Full description

Bibliographic Details
Main Authors: Lovegrove, Elizabeth, Simcoe, Robert A.
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:en_US
Published: IOP Publishing 2013
Online Access:http://hdl.handle.net/1721.1/76700
https://orcid.org/0000-0003-3769-9559
Description
Summary:We study the frequency of Mg II absorption in the outer halos of galaxies at z = 0.6-1.4 (with median z = 0.87), using new spectra obtained of 10 background quasars with galaxy impact parameters of b < 100 kpc. The quasar sight lines were selected from the Sloan Digital Sky Survey DR6 QSO catalog based on proximity to galaxies in the DEEP2 redshift survey. In addition to the 10 small impact systems, we examine 40 additional galaxies at 100 kpc < b < 500 kpc serendipitously located in the same fields. We detect Mg II absorbers with equivalent width Wr = 0.15-1.0 Å, though not all absorbers correlate with DEEP galaxies. We find five unique absorbers within Δv = 500 km s–1 and b < 100 kpc of a DEEP galaxy; this small sample contains both early- and late-type galaxies and has no obvious trends with star formation rate. No Mg II is detected more than 100 kpc from galaxies; inside this radius the covering fraction scales with impact parameter and galaxy luminosity in a very similar fashion to samples studied at lower redshift. In all but one case, when Mg II is detected without a spectroscopically confirmed galaxy, there exists a plausible photometric candidate which was excluded because of slit collision or apparent magnitude. We do not detect any strong absorbers with Wr > 1.0 Å, consistent with other samples of galaxy-selected Mg II systems. We speculate that Mg II systems with 0.3 < Wr < 1.0 trace old relic material from galactic outflows and/or the halo assembly process, and that in contrast, systems with large Wr are more likely to reflect the more recent star-forming history of their associated galaxies.