Time-Reversal Symmetry and Universal Conductance Fluctuations in a Driven Two-Level System
In the presence of time-reversal symmetry, quantum interference gives strong corrections to the electric conductivity of disordered systems. The self-interference of an electron wave function traveling time-reversed paths leads to effects such as weak localization and universal conductance fluctuati...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Physical Society
2013
|
Online Access: | http://hdl.handle.net/1721.1/77166 https://orcid.org/0000-0002-7069-1025 |
Summary: | In the presence of time-reversal symmetry, quantum interference gives strong corrections to the electric conductivity of disordered systems. The self-interference of an electron wave function traveling time-reversed paths leads to effects such as weak localization and universal conductance fluctuations. Here, we investigate the effects of broken time-reversal symmetry in a driven artificial two-level system. Using a superconducting flux qubit, we implement scattering events as multiple Landau-Zener transitions by driving the qubit periodically back and forth through an avoided crossing. Interference between different qubit trajectories gives rise to a speckle pattern in the qubit transition rate, similar to the interference patterns created when coherent light is scattered off a disordered potential. Since the scattering events are imposed by the driving protocol, we can control the time-reversal symmetry of the system by making the drive waveform symmetric or asymmetric in time. We find that the fluctuations of the transition rate exhibit a sharp peak when the drive is time symmetric, similar to universal conductance fluctuations in electronic transport through mesoscopic systems. |
---|