Learning and Long-Term Retention of Large-Scale Artificial Languages
Recovering discrete words from continuous speech is one of the first challenges facing language learners. Infants and adults can make use of the statistical structure of utterances to learn the forms of words from unsegmented input, suggesting that this ability may be useful for bootstrapping langua...
Autori principali: | Frank, Michael C., Tenenbaum, Joshua B., Gibson, Edward A. |
---|---|
Altri autori: | Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences |
Natura: | Articolo |
Lingua: | en_US |
Pubblicazione: |
Public Library of Science
2013
|
Accesso online: | http://hdl.handle.net/1721.1/77211 https://orcid.org/0000-0002-1925-2035 https://orcid.org/0000-0002-5912-883X |
Documenti analoghi
Documenti analoghi
-
Long-term visuospatial retention unaffected by fornix transection.
di: Kwok, S, et al.
Pubblicazione: (2010) -
Large-scale evidence of dependency length minimization in 37 languages
di: Futrell, Richard Landy Jones, et al.
Pubblicazione: (2016) -
Mood Meter: Large-Scale and Long-Term Smile Monitoring System
di: Hernandez Rivera, Javier, et al.
Pubblicazione: (2013) -
Modelling scene change for large-scale long term laser localisation
di: Withers, D, et al.
Pubblicazione: (2017) -
Mapping patterns of long-term settlement in Northern Mesopotamia at a large scale
di: Menze, Bjoern H., et al.
Pubblicazione: (2012)