Molecular simulation study of homogeneous crystal nucleation in n-alkane melts

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2011.

Bibliographic Details
Main Author: Yi, Peng, Ph. D. Massachusetts Institute of Technology
Other Authors: Gregory C. Rutledge and Mehran Kardar.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2013
Subjects:
Online Access:http://hdl.handle.net/1721.1/77495
_version_ 1826188652248563712
author Yi, Peng, Ph. D. Massachusetts Institute of Technology
author2 Gregory C. Rutledge and Mehran Kardar.
author_facet Gregory C. Rutledge and Mehran Kardar.
Yi, Peng, Ph. D. Massachusetts Institute of Technology
author_sort Yi, Peng, Ph. D. Massachusetts Institute of Technology
collection MIT
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2011.
first_indexed 2024-09-23T08:02:57Z
format Thesis
id mit-1721.1/77495
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T08:02:57Z
publishDate 2013
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/774952019-04-09T16:17:18Z Molecular simulation study of homogeneous crystal nucleation in n-alkane melts Yi, Peng, Ph. D. Massachusetts Institute of Technology Gregory C. Rutledge and Mehran Kardar. Massachusetts Institute of Technology. Dept. of Physics. Massachusetts Institute of Technology. Dept. of Physics. Physics. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2011. Cataloged from PDF version of thesis. Includes bibliographical references (p. 115-121). This work used molecular dynamics (MD) and Monte Carlo (MC) method to study the homogeneous crystal nucleation in the melts of n-alkanes, the simplest class of chain molecules. Three n-alkanes with progressive chain length were studied, n-octane (C8), n-eicosane (C20), and C150, using a united atom force field, which is able to reproduce physical quantities related to the solid-liquid phase transition in n-alkanes. Using a 3D Ising model, we proved that the size of the largest nucleus in the system, nmax, is the controlling reaction coordinate during the nucleation process. We have made direct observation of the homogeneous crystal nucleation using MD simulation at as small as 15% under-cooling. We calculated the nucleation rate and identified the critical nucleus through a mean-first-passage time (MFPT) analysis. At about 20% under-cooling, the critical nucleus size n* is around 100 united atoms, and is slightly decreasing as the chain length increases. Abnormal temperature dependence of n* against classical nucleation theory was found in C150 system. This behavior could possibly be explained by the high viscosity of the melt formed by long chain molecules. The crystal nucleus has a cylindrical shape. We have observed the change of the structure of the crystal nucleus as the chain length increases. For C8, the chains attach to and detach from the crystal nucleus as a whole, and the chains end at the end surface of the cylindrical nucleus. For C20, the partial participation of chains in the crystal nucleus became apparent, where the critical nucleus consists of a bundle of crystal segments with the tails on the same chains extending into the amorphous melt. For C150, chain folding was observed during the nucleation stage. A cylindrical nucleus model was adopted to characterize the crystal nucleus. The nucleus free energy [Delta]G(n) was sampled using MC, and was used to calculate the solid-liquid interfacial free energies based on classical nucleation theory. The end surface free energy [sigma]e is about 4 mJ/m2 and the side surface free energy [sigma]s is about 10 mJ/m 2 . Their values are insensitive to the chain length. by Peng Yi. Ph.D. 2013-03-01T15:11:54Z 2013-03-01T15:11:54Z 2011 2011 Thesis http://hdl.handle.net/1721.1/77495 827315416 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 121 p. application/pdf Massachusetts Institute of Technology
spellingShingle Physics.
Yi, Peng, Ph. D. Massachusetts Institute of Technology
Molecular simulation study of homogeneous crystal nucleation in n-alkane melts
title Molecular simulation study of homogeneous crystal nucleation in n-alkane melts
title_full Molecular simulation study of homogeneous crystal nucleation in n-alkane melts
title_fullStr Molecular simulation study of homogeneous crystal nucleation in n-alkane melts
title_full_unstemmed Molecular simulation study of homogeneous crystal nucleation in n-alkane melts
title_short Molecular simulation study of homogeneous crystal nucleation in n-alkane melts
title_sort molecular simulation study of homogeneous crystal nucleation in n alkane melts
topic Physics.
url http://hdl.handle.net/1721.1/77495
work_keys_str_mv AT yipengphdmassachusettsinstituteoftechnology molecularsimulationstudyofhomogeneouscrystalnucleationinnalkanemelts