A universal model for mobility and migration patterns

Introduced in its contemporary form in 1946 (ref. 1), but with roots that go back to the eighteenth century2, the gravity law1, 3, 4 is the prevailing framework with which to predict population movement3, 5, 6, cargo shipping volume7 and inter-city phone calls8, 9, as well as bilateral trade flows b...

Full description

Bibliographic Details
Main Authors: Simini, Filippo, Gonzalez, Marta C., Maritan, Amos, Barabasi, Albert-Laszlo
Other Authors: Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Format: Article
Language:en_US
Published: Nature Publishing Group 2013
Online Access:http://hdl.handle.net/1721.1/77896
https://orcid.org/0000-0002-8482-0318
Description
Summary:Introduced in its contemporary form in 1946 (ref. 1), but with roots that go back to the eighteenth century2, the gravity law1, 3, 4 is the prevailing framework with which to predict population movement3, 5, 6, cargo shipping volume7 and inter-city phone calls8, 9, as well as bilateral trade flows between nations10. Despite its widespread use, it relies on adjustable parameters that vary from region to region and suffers from known analytic inconsistencies. Here we introduce a stochastic process capturing local mobility decisions that helps us analytically derive commuting and mobility fluxes that require as input only information on the population distribution. The resulting radiation model predicts mobility patterns in good agreement with mobility and transport patterns observed in a wide range of phenomena, from long-term migration patterns to communication volume between different regions. Given its parameter-free nature, the model can be applied in areas where we lack previous mobility measurements, significantly improving the predictive accuracy of most of the phenomena affected by mobility and transport processes11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23.