Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling

The evolution during silicon solar cell processing of performance-limiting iron impurities is investigated with synchrotron-based x-ray fluorescence microscopy. We find that during industrial phosphorus diffusion, bulk precipitate dissolution is incomplete in wafers with high metal content, specific...

Full description

Bibliographic Details
Main Authors: Fenning, David P., Hofstetter, Jasmin, Bertoni, Mariana I., Hudelson, S., Rinio, M., Lelievre, J. F., Lai, Barry, del Canizo, C., Buonassisi, Tonio
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:en_US
Published: American Institute of Physics (AIP) 2013
Online Access:http://hdl.handle.net/1721.1/78005
https://orcid.org/0000-0002-4609-9312
https://orcid.org/0000-0001-8345-4937
_version_ 1826216236256591872
author Fenning, David P.
Hofstetter, Jasmin
Bertoni, Mariana I.
Hudelson, S.
Rinio, M.
Lelievre, J. F.
Lai, Barry
del Canizo, C.
Buonassisi, Tonio
author2 Massachusetts Institute of Technology. Department of Mechanical Engineering
author_facet Massachusetts Institute of Technology. Department of Mechanical Engineering
Fenning, David P.
Hofstetter, Jasmin
Bertoni, Mariana I.
Hudelson, S.
Rinio, M.
Lelievre, J. F.
Lai, Barry
del Canizo, C.
Buonassisi, Tonio
author_sort Fenning, David P.
collection MIT
description The evolution during silicon solar cell processing of performance-limiting iron impurities is investigated with synchrotron-based x-ray fluorescence microscopy. We find that during industrial phosphorus diffusion, bulk precipitate dissolution is incomplete in wafers with high metal content, specifically ingot border material. Postdiffusion low-temperature annealing is not found to alter appreciably the size or spatial distribution of FeSi[subscript 2] precipitates, although cell efficiency improves due to a decrease in iron interstitial concentration. Gettering simulations successfully model experiment results and suggest the efficacy of high- and low-temperature processing to reduce both precipitated and interstitial iron concentrations, respectively.
first_indexed 2024-09-23T16:44:28Z
format Article
id mit-1721.1/78005
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T16:44:28Z
publishDate 2013
publisher American Institute of Physics (AIP)
record_format dspace
spelling mit-1721.1/780052022-09-29T21:09:07Z Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling Fenning, David P. Hofstetter, Jasmin Bertoni, Mariana I. Hudelson, S. Rinio, M. Lelievre, J. F. Lai, Barry del Canizo, C. Buonassisi, Tonio Massachusetts Institute of Technology. Department of Mechanical Engineering Fenning, David P. Bertoni, Mariana I. Hudelson, S. Buonassisi, Tonio The evolution during silicon solar cell processing of performance-limiting iron impurities is investigated with synchrotron-based x-ray fluorescence microscopy. We find that during industrial phosphorus diffusion, bulk precipitate dissolution is incomplete in wafers with high metal content, specifically ingot border material. Postdiffusion low-temperature annealing is not found to alter appreciably the size or spatial distribution of FeSi[subscript 2] precipitates, although cell efficiency improves due to a decrease in iron interstitial concentration. Gettering simulations successfully model experiment results and suggest the efficacy of high- and low-temperature processing to reduce both precipitated and interstitial iron concentrations, respectively. United States. Dept. of Energy (Contract DE-FG36-09GO1900) Spanish Ministry of Science and Innovation (Thincells Project TEC2008-06798-C03-02) 2013-03-27T18:53:00Z 2013-03-27T18:53:00Z 2011-04 2010-10 Article http://purl.org/eprint/type/JournalArticle 0003-6951 1077-3118 http://hdl.handle.net/1721.1/78005 Fenning, D. P. et al. “Iron Distribution in Silicon After Solar Cell Processing: Synchrotron Analysis and Predictive Modeling.” Applied Physics Letters 98.16 (2011): 162103. ©2011 American Institute of Physics https://orcid.org/0000-0002-4609-9312 https://orcid.org/0000-0001-8345-4937 en_US http://dx.doi.org/10.1063/1.3575583 Applied Physics Letters application/pdf American Institute of Physics (AIP)
spellingShingle Fenning, David P.
Hofstetter, Jasmin
Bertoni, Mariana I.
Hudelson, S.
Rinio, M.
Lelievre, J. F.
Lai, Barry
del Canizo, C.
Buonassisi, Tonio
Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling
title Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling
title_full Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling
title_fullStr Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling
title_full_unstemmed Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling
title_short Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling
title_sort iron distribution in silicon after solar cell processing synchrotron analysis and predictive modeling
url http://hdl.handle.net/1721.1/78005
https://orcid.org/0000-0002-4609-9312
https://orcid.org/0000-0001-8345-4937
work_keys_str_mv AT fenningdavidp irondistributioninsiliconaftersolarcellprocessingsynchrotronanalysisandpredictivemodeling
AT hofstetterjasmin irondistributioninsiliconaftersolarcellprocessingsynchrotronanalysisandpredictivemodeling
AT bertonimarianai irondistributioninsiliconaftersolarcellprocessingsynchrotronanalysisandpredictivemodeling
AT hudelsons irondistributioninsiliconaftersolarcellprocessingsynchrotronanalysisandpredictivemodeling
AT riniom irondistributioninsiliconaftersolarcellprocessingsynchrotronanalysisandpredictivemodeling
AT lelievrejf irondistributioninsiliconaftersolarcellprocessingsynchrotronanalysisandpredictivemodeling
AT laibarry irondistributioninsiliconaftersolarcellprocessingsynchrotronanalysisandpredictivemodeling
AT delcanizoc irondistributioninsiliconaftersolarcellprocessingsynchrotronanalysisandpredictivemodeling
AT buonassisitonio irondistributioninsiliconaftersolarcellprocessingsynchrotronanalysisandpredictivemodeling