Impact of defect type on hydrogen passivation effectiveness in multicrystalline silicon solar cells
In this work we examine the effectiveness of hydrogen passivation at grain boundaries as a function of defect type and microstructure in multicrystalline silicon. We analyze a specially prepared solar cell with alternating mm-wide bare and SiNx-coated stripes using laser beam-induced current (LBIC),...
Main Authors: | , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers
2013
|
Online Access: | http://hdl.handle.net/1721.1/78294 https://orcid.org/0000-0002-4609-9312 https://orcid.org/0000-0001-8345-4937 |
_version_ | 1826190457453936640 |
---|---|
author | Bertoni, Mariana I. Hudelson, S. Newman, Bonna Kay Bernardis, S. Fenning, David P. Dekkers, H. F. W. Cornagliotti, E. Zuschlag, A. Micard, G. Hahn, G. Coletti, G. Lai, Barry Buonassisi, Tonio |
author2 | Massachusetts Institute of Technology. Department of Mechanical Engineering |
author_facet | Massachusetts Institute of Technology. Department of Mechanical Engineering Bertoni, Mariana I. Hudelson, S. Newman, Bonna Kay Bernardis, S. Fenning, David P. Dekkers, H. F. W. Cornagliotti, E. Zuschlag, A. Micard, G. Hahn, G. Coletti, G. Lai, Barry Buonassisi, Tonio |
author_sort | Bertoni, Mariana I. |
collection | MIT |
description | In this work we examine the effectiveness of hydrogen passivation at grain boundaries as a function of defect type and microstructure in multicrystalline silicon. We analyze a specially prepared solar cell with alternating mm-wide bare and SiNx-coated stripes using laser beam-induced current (LBIC), electron backscatter diffraction (EBSD), synchrotron-based X-ray fluorescence microscopy (μ-XRF), and defect etching to correlate pre- and post-hydrogenation recombination activity with grain boundary character, density of iron-silicide nanoprecipitates, and dislocations. This study reveals that the microstructure of boundaries that passivate well and those that do not differ mostly in the character of the dislocations along the grain boundary, while iron silicide precipitates along the grain boundaries (above detection limits) were found to play a less significant role. |
first_indexed | 2024-09-23T08:40:33Z |
format | Article |
id | mit-1721.1/78294 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T08:40:33Z |
publishDate | 2013 |
publisher | Institute of Electrical and Electronics Engineers |
record_format | dspace |
spelling | mit-1721.1/782942022-09-23T13:45:40Z Impact of defect type on hydrogen passivation effectiveness in multicrystalline silicon solar cells Bertoni, Mariana I. Hudelson, S. Newman, Bonna Kay Bernardis, S. Fenning, David P. Dekkers, H. F. W. Cornagliotti, E. Zuschlag, A. Micard, G. Hahn, G. Coletti, G. Lai, Barry Buonassisi, Tonio Massachusetts Institute of Technology. Department of Mechanical Engineering Bertoni, Mariana I. Hudelson, S. Newman, Bonna Kay Bernardis, S. Fenning, David P. Buonassisi, Tonio In this work we examine the effectiveness of hydrogen passivation at grain boundaries as a function of defect type and microstructure in multicrystalline silicon. We analyze a specially prepared solar cell with alternating mm-wide bare and SiNx-coated stripes using laser beam-induced current (LBIC), electron backscatter diffraction (EBSD), synchrotron-based X-ray fluorescence microscopy (μ-XRF), and defect etching to correlate pre- and post-hydrogenation recombination activity with grain boundary character, density of iron-silicide nanoprecipitates, and dislocations. This study reveals that the microstructure of boundaries that passivate well and those that do not differ mostly in the character of the dislocations along the grain boundary, while iron silicide precipitates along the grain boundaries (above detection limits) were found to play a less significant role. 2013-04-04T19:01:27Z 2013-04-04T19:01:27Z 2010-06 Article http://purl.org/eprint/type/ConferencePaper 978-1-4244-5890-5 0160-8371 INSPEC Accession Number: 11625881 http://hdl.handle.net/1721.1/78294 Bertoni, M.I. et al. “Impact of Defect Type on Hydrogen Passivation Effectiveness in Multicrystalline Silicon Solar Cells.” 2010 35th IEEE Photovoltaic Specialists Conference (PVSC), 20-25 June 2010, Hawaiian Convention Center, Honolulu, HI, USA, IEEE, 2010. 000345–000346. CrossRef. Web. ©2010 IEEE. https://orcid.org/0000-0002-4609-9312 https://orcid.org/0000-0001-8345-4937 en_US http://dx.doi.org/10.1109/PVSC.2010.5616904 Proceedings of the 2010 35th IEEE Photovoltaic Specialists Conference (PVSC) Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf Institute of Electrical and Electronics Engineers IEEE |
spellingShingle | Bertoni, Mariana I. Hudelson, S. Newman, Bonna Kay Bernardis, S. Fenning, David P. Dekkers, H. F. W. Cornagliotti, E. Zuschlag, A. Micard, G. Hahn, G. Coletti, G. Lai, Barry Buonassisi, Tonio Impact of defect type on hydrogen passivation effectiveness in multicrystalline silicon solar cells |
title | Impact of defect type on hydrogen passivation effectiveness in multicrystalline silicon solar cells |
title_full | Impact of defect type on hydrogen passivation effectiveness in multicrystalline silicon solar cells |
title_fullStr | Impact of defect type on hydrogen passivation effectiveness in multicrystalline silicon solar cells |
title_full_unstemmed | Impact of defect type on hydrogen passivation effectiveness in multicrystalline silicon solar cells |
title_short | Impact of defect type on hydrogen passivation effectiveness in multicrystalline silicon solar cells |
title_sort | impact of defect type on hydrogen passivation effectiveness in multicrystalline silicon solar cells |
url | http://hdl.handle.net/1721.1/78294 https://orcid.org/0000-0002-4609-9312 https://orcid.org/0000-0001-8345-4937 |
work_keys_str_mv | AT bertonimarianai impactofdefecttypeonhydrogenpassivationeffectivenessinmulticrystallinesiliconsolarcells AT hudelsons impactofdefecttypeonhydrogenpassivationeffectivenessinmulticrystallinesiliconsolarcells AT newmanbonnakay impactofdefecttypeonhydrogenpassivationeffectivenessinmulticrystallinesiliconsolarcells AT bernardiss impactofdefecttypeonhydrogenpassivationeffectivenessinmulticrystallinesiliconsolarcells AT fenningdavidp impactofdefecttypeonhydrogenpassivationeffectivenessinmulticrystallinesiliconsolarcells AT dekkershfw impactofdefecttypeonhydrogenpassivationeffectivenessinmulticrystallinesiliconsolarcells AT cornagliottie impactofdefecttypeonhydrogenpassivationeffectivenessinmulticrystallinesiliconsolarcells AT zuschlaga impactofdefecttypeonhydrogenpassivationeffectivenessinmulticrystallinesiliconsolarcells AT micardg impactofdefecttypeonhydrogenpassivationeffectivenessinmulticrystallinesiliconsolarcells AT hahng impactofdefecttypeonhydrogenpassivationeffectivenessinmulticrystallinesiliconsolarcells AT colettig impactofdefecttypeonhydrogenpassivationeffectivenessinmulticrystallinesiliconsolarcells AT laibarry impactofdefecttypeonhydrogenpassivationeffectivenessinmulticrystallinesiliconsolarcells AT buonassisitonio impactofdefecttypeonhydrogenpassivationeffectivenessinmulticrystallinesiliconsolarcells |