Interface pinning of immiscible gravity-exchange flows in porous media
We study the gravity-exchange flow of two immiscible fluids in a porous medium and show that, in contrast with the miscible case, a portion of the initial interface remains pinned at all times. We elucidate, by means of micromodel experiments, the pore-level mechanism responsible for capillary pinni...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Physical Society
2013
|
Online Access: | http://hdl.handle.net/1721.1/78313 https://orcid.org/0000-0002-7370-2332 https://orcid.org/0000-0003-2525-3779 |
Summary: | We study the gravity-exchange flow of two immiscible fluids in a porous medium and show that, in contrast with the miscible case, a portion of the initial interface remains pinned at all times. We elucidate, by means of micromodel experiments, the pore-level mechanism responsible for capillary pinning at the macroscale. We propose a sharp-interface gravity-current model that incorporates capillarity and quantitatively explains the experimental observations, including the x∼t[superscript 1/2] spreading behavior at intermediate times and the fact that capillarity stops a finite-release current. Our theory and experiments suggest that capillary pinning is potentially an important, yet unexplored, trapping mechanism during CO[subscript 2] sequestration in deep saline aquifers. |
---|