Spectral element/smoothed profile method for turbulent flow simulations of waterjet propulsion systems
We have developed fast numerical algorithms [1] for flows with complex moving domains, e.g. propellers in free-space and impellers in waterjets, by combining the smoothed profile method (SPM, [2, 3, 4]) with the spectral element method [5]. The new approach exhibits high-order accuracy with respect...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Society for Modeling & Simulation International
2013
|
Online Access: | http://hdl.handle.net/1721.1/78340 https://orcid.org/0000-0002-2055-9245 |
_version_ | 1811080115571916800 |
---|---|
author | Luo, Xian Chryssostomidis, Chryssostomos Karniadakis, George E. |
author2 | Massachusetts Institute of Technology. Sea Grant College Program |
author_facet | Massachusetts Institute of Technology. Sea Grant College Program Luo, Xian Chryssostomidis, Chryssostomos Karniadakis, George E. |
author_sort | Luo, Xian |
collection | MIT |
description | We have developed fast numerical algorithms [1] for flows with complex moving domains, e.g. propellers in free-space and impellers in waterjets, by combining the smoothed profile method (SPM, [2, 3, 4]) with the spectral element method [5]. The new approach exhibits high-order accuracy with respect to both temporal and spatial discretizations. Most importantly, the method yields great computational efficiency as it uses fixed simple Cartesian grids and hence it avoids body-conforming mesh and remeshing. To simulate high Reynolds number flows, we incorporate the Spalart-Allmaras turbulence model and solve the unsteady Reynolds-averaged Navier-Stokes (URANS) equations. We present verification of the method by studying the turbulent boundary layer over a flat plate. We show that both the eddy viscosity and velocity fields are resolved very accurately within the boundary layer. Having developed and validated our numerical approach, we apply it to study transitional and turbulent flows in an axial-flow waterjet propulsion system. The efficiency and robustness of our method enable parametric study of many cases which is required in design phase. We present performance analysis and show the agreement with experimental data for waterjets. |
first_indexed | 2024-09-23T11:26:04Z |
format | Article |
id | mit-1721.1/78340 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T11:26:04Z |
publishDate | 2013 |
publisher | Society for Modeling & Simulation International |
record_format | dspace |
spelling | mit-1721.1/783402022-10-01T03:34:13Z Spectral element/smoothed profile method for turbulent flow simulations of waterjet propulsion systems Luo, Xian Chryssostomidis, Chryssostomos Karniadakis, George E. Massachusetts Institute of Technology. Sea Grant College Program Luo, Xian Chryssostomidis, Chryssostomos Karniadakis, George E. We have developed fast numerical algorithms [1] for flows with complex moving domains, e.g. propellers in free-space and impellers in waterjets, by combining the smoothed profile method (SPM, [2, 3, 4]) with the spectral element method [5]. The new approach exhibits high-order accuracy with respect to both temporal and spatial discretizations. Most importantly, the method yields great computational efficiency as it uses fixed simple Cartesian grids and hence it avoids body-conforming mesh and remeshing. To simulate high Reynolds number flows, we incorporate the Spalart-Allmaras turbulence model and solve the unsteady Reynolds-averaged Navier-Stokes (URANS) equations. We present verification of the method by studying the turbulent boundary layer over a flat plate. We show that both the eddy viscosity and velocity fields are resolved very accurately within the boundary layer. Having developed and validated our numerical approach, we apply it to study transitional and turbulent flows in an axial-flow waterjet propulsion system. The efficiency and robustness of our method enable parametric study of many cases which is required in design phase. We present performance analysis and show the agreement with experimental data for waterjets. United States. Office of Naval Research (N00014-09-1-0160) Massachusetts Institute of Technology. Sea Grant College Program (Sea Basing:T-Craft Dynamic Analysis, NA06OAR4170019) 2013-04-10T20:43:18Z 2013-04-10T20:43:18Z 2010-07 Article http://purl.org/eprint/type/ConferencePaper http://hdl.handle.net/1721.1/78340 Luo, Xian, Chryssostomos Chryssostomidis, and George Em Karniadakis. "Spectral element/smoothed profile method for turbulent flow simulations of waterjet propulsion Proceedings of the 2010 Conference on Grand Challenges in Modeling & Simulation, GCMS '10, Ottawa, ON, Canada, July 11-14, 2010. https://orcid.org/0000-0002-2055-9245 en_US http://dl.acm.org/citation.cfm?id=2020637 Proceedings of the 2010 Conference on Grand Challenges in Modeling & Simulation, GCMS '10 Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/ application/pdf Society for Modeling & Simulation International MIT web domain |
spellingShingle | Luo, Xian Chryssostomidis, Chryssostomos Karniadakis, George E. Spectral element/smoothed profile method for turbulent flow simulations of waterjet propulsion systems |
title | Spectral element/smoothed profile method for turbulent flow simulations of waterjet propulsion systems |
title_full | Spectral element/smoothed profile method for turbulent flow simulations of waterjet propulsion systems |
title_fullStr | Spectral element/smoothed profile method for turbulent flow simulations of waterjet propulsion systems |
title_full_unstemmed | Spectral element/smoothed profile method for turbulent flow simulations of waterjet propulsion systems |
title_short | Spectral element/smoothed profile method for turbulent flow simulations of waterjet propulsion systems |
title_sort | spectral element smoothed profile method for turbulent flow simulations of waterjet propulsion systems |
url | http://hdl.handle.net/1721.1/78340 https://orcid.org/0000-0002-2055-9245 |
work_keys_str_mv | AT luoxian spectralelementsmoothedprofilemethodforturbulentflowsimulationsofwaterjetpropulsionsystems AT chryssostomidischryssostomos spectralelementsmoothedprofilemethodforturbulentflowsimulationsofwaterjetpropulsionsystems AT karniadakisgeorgee spectralelementsmoothedprofilemethodforturbulentflowsimulationsofwaterjetpropulsionsystems |