Two-link swimming using buoyant orientation

The scallop theorem posits that a two-link system immersed in a fluid at low Reynolds number cannot achieve any net translation via cyclic changes in its hinge angle. Here, we propose an approach to “breaking” this theorem, based on a static separation between the centers of mass and buoyancy in a n...

Full description

Bibliographic Details
Main Authors: Burton, Lisa Janelle, Hatton, R. L., Choset, H., Hosoi, Anette E.
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:en_US
Published: American Institute of Physics (AIP) 2013
Online Access:http://hdl.handle.net/1721.1/78570
https://orcid.org/0000-0003-4940-7496
Description
Summary:The scallop theorem posits that a two-link system immersed in a fluid at low Reynolds number cannot achieve any net translation via cyclic changes in its hinge angle. Here, we propose an approach to “breaking” this theorem, based on a static separation between the centers of mass and buoyancy in a net neutrally buoyant system. This separation gives the system a natural equilibrium orientation, allowing it to passively reorient without changing shape.