Marangoni convection in droplets on superhydrophobic surfaces
We consider a small droplet of water sitting on top of a heated superhydrophobic surface. A toroidal convection pattern develops in which fluid is observed to rise along the surface of the spherical droplet and to accelerate downwards in the interior towards the liquid/solid contact point. The inter...
Principais autores: | , , , |
---|---|
Outros Autores: | |
Formato: | Artigo |
Idioma: | en_US |
Publicado em: |
Cambridge University Press
2013
|
Acesso em linha: | http://hdl.handle.net/1721.1/78603 https://orcid.org/0000-0003-4940-7496 https://orcid.org/0000-0001-8323-2779 |
Resumo: | We consider a small droplet of water sitting on top of a heated superhydrophobic surface. A toroidal convection pattern develops in which fluid is observed to rise along the surface of the spherical droplet and to accelerate downwards in the interior towards the liquid/solid contact point. The internal dynamics arise due to the presence of a vertical temperature gradient; this leads to a gradient in surface tension which in turn drives fluid away from the contact point along the interface. We develop a solution to this thermocapillary-driven Marangoni flow analytically in terms of streamfunctions. Quantitative comparisons between analytical and experimental results, as well as effective heat transfer coefficients, are presented. |
---|