In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction p...

Full description

Bibliographic Details
Main Authors: Lu, Yi-chun, Crumlin, Ethan J., Veith, Gabriel M., Harding, Jonathon R., Mutoro, Eva, Baggetto, Loic, Dudney, Nancy J., Liu, Zhi, Shao-Horn, Yang
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Language:en_US
Published: Nature Publishing Group 2013
Online Access:http://hdl.handle.net/1721.1/79102
https://orcid.org/0000-0002-5732-663X
_version_ 1811088246036234240
author Lu, Yi-chun
Crumlin, Ethan J.
Veith, Gabriel M.
Harding, Jonathon R.
Mutoro, Eva
Baggetto, Loic
Dudney, Nancy J.
Liu, Zhi
Shao-Horn, Yang
author2 Massachusetts Institute of Technology. Department of Materials Science and Engineering
author_facet Massachusetts Institute of Technology. Department of Materials Science and Engineering
Lu, Yi-chun
Crumlin, Ethan J.
Veith, Gabriel M.
Harding, Jonathon R.
Mutoro, Eva
Baggetto, Loic
Dudney, Nancy J.
Liu, Zhi
Shao-Horn, Yang
author_sort Lu, Yi-chun
collection MIT
description The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry.
first_indexed 2024-09-23T13:59:01Z
format Article
id mit-1721.1/79102
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T13:59:01Z
publishDate 2013
publisher Nature Publishing Group
record_format dspace
spelling mit-1721.1/791022022-10-01T18:20:19Z In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions Lu, Yi-chun Crumlin, Ethan J. Veith, Gabriel M. Harding, Jonathon R. Mutoro, Eva Baggetto, Loic Dudney, Nancy J. Liu, Zhi Shao-Horn, Yang Massachusetts Institute of Technology. Department of Materials Science and Engineering Massachusetts Institute of Technology. Department of Mechanical Engineering Massachusetts Institute of Technology. Electrochemical Energy Laboratory Lu, Yi-chun Crumlin, Ethan J. Veith, Gabriel M. Mutoro, Eva Shao-Horn, Yang The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry. National Science Foundation (U.S.) (Materials Research Science and Engineering Center (MRSEC) Program, Award DMR-0819762) United States. Dept. of Energy (Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies of the U. S. Department of Energy under contract no. DE-AC03-76SF00098) Lawrence Berkeley National Laboratory United States. Dept. of Energy (Office of Basic Energy Sciences, Materials Sciences and Engineering) 2013-06-13T20:11:39Z 2013-06-13T20:11:39Z 2012-10 2012-07 Article http://purl.org/eprint/type/JournalArticle 2045-2322 http://hdl.handle.net/1721.1/79102 Lu, Yi-Chun, Ethan J. Crumlin, Gabriel M. Veith, Jonathon R. Harding, Eva Mutoro, Loïc Baggetto, Nancy J. Dudney, Zhi Liu, and Yang Shao-Horn. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions. Scientific Reports 2 (October 8, 2012). https://orcid.org/0000-0002-5732-663X en_US http://dx.doi.org/10.1038/srep00715 Scientific Reports Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/ application/pdf Nature Publishing Group Scientific Reports
spellingShingle Lu, Yi-chun
Crumlin, Ethan J.
Veith, Gabriel M.
Harding, Jonathon R.
Mutoro, Eva
Baggetto, Loic
Dudney, Nancy J.
Liu, Zhi
Shao-Horn, Yang
In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions
title In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions
title_full In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions
title_fullStr In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions
title_full_unstemmed In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions
title_short In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions
title_sort in situ ambient pressure x ray photoelectron spectroscopy studies of lithium oxygen redox reactions
url http://hdl.handle.net/1721.1/79102
https://orcid.org/0000-0002-5732-663X
work_keys_str_mv AT luyichun insituambientpressurexrayphotoelectronspectroscopystudiesoflithiumoxygenredoxreactions
AT crumlinethanj insituambientpressurexrayphotoelectronspectroscopystudiesoflithiumoxygenredoxreactions
AT veithgabrielm insituambientpressurexrayphotoelectronspectroscopystudiesoflithiumoxygenredoxreactions
AT hardingjonathonr insituambientpressurexrayphotoelectronspectroscopystudiesoflithiumoxygenredoxreactions
AT mutoroeva insituambientpressurexrayphotoelectronspectroscopystudiesoflithiumoxygenredoxreactions
AT baggettoloic insituambientpressurexrayphotoelectronspectroscopystudiesoflithiumoxygenredoxreactions
AT dudneynancyj insituambientpressurexrayphotoelectronspectroscopystudiesoflithiumoxygenredoxreactions
AT liuzhi insituambientpressurexrayphotoelectronspectroscopystudiesoflithiumoxygenredoxreactions
AT shaohornyang insituambientpressurexrayphotoelectronspectroscopystudiesoflithiumoxygenredoxreactions