Microfluidic Fabrication of Hydrogel Microparticles Containing Functionalized Viral Nanotemplates

We demonstrate rapid microfluidic fabrication of hybrid microparticles composed of functionalized viral nanotemplates directly embedded in polymeric hydrogels. Specifically, genetically modified tobacco mosaic virus (TMV) templates were covalently labeled with fluorescent markers or metalized with p...

Full description

Bibliographic Details
Main Authors: Lewis, Christina L., Lin, Yan, Yang, Cuixian, Manocchi, Amy K., Yuet, Kai P., Doyle, Patrick S., Yi, Hyunmin
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering
Format: Article
Language:en_US
Published: American Chemical Society 2013
Online Access:http://hdl.handle.net/1721.1/79365
https://orcid.org/0000-0002-1381-8923
Description
Summary:We demonstrate rapid microfluidic fabrication of hybrid microparticles composed of functionalized viral nanotemplates directly embedded in polymeric hydrogels. Specifically, genetically modified tobacco mosaic virus (TMV) templates were covalently labeled with fluorescent markers or metalized with palladium (Pd) nanoparticles (Pd-TMV) and then suspended in a poly(ethylene glycol)-based solution. Upon formation in a flow-focusing device, droplets were photopolymerized with UV light to form microparticles. Fluorescence and confocal microscopy images of microparticles containing fluorescently labeled TMV show uniform distribution of TMV nanotemplates throughout the microparticles. Catalytic activity, via the dichromate reduction reaction, is also demonstrated with microparticles containing Pd−TMV complexes. Additionally, Janus microparticles were fabricated containing viruses embedded in one side and magnetic nanoparticles in the other, which enabled simple separation from bulk solution. These results represent a facile route to directly harness the advantages of viral nanotemplates into a readily usable and stable 3D assembled format.