Coherence and Raman Sideband Cooling of a Single Atom in an Optical Tweezer
We investigate quantum control of a single atom in a tightly focused optical tweezer trap. We show that inevitable spatially varying polarization gives rise to significant internal-state decoherence but that this effect can be mitigated by an appropriately chosen magnetic bias field. This enables Ra...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Physical Society
2013
|
Online Access: | http://hdl.handle.net/1721.1/79588 https://orcid.org/0000-0002-9786-0538 |
Summary: | We investigate quantum control of a single atom in a tightly focused optical tweezer trap. We show that inevitable spatially varying polarization gives rise to significant internal-state decoherence but that this effect can be mitigated by an appropriately chosen magnetic bias field. This enables Raman sideband cooling of a single atom close to its three-dimensional ground state (vibrational quantum numbers n̅ [subscript x]=n̅ [subscript y]=0.01, n̅ [subscript z]=8) even for a trap beam waist as small as w=900 nm. The small atomic wave packet with δx=δy=24 nm and δz=270 nm represents a promising starting point for future hybrid quantum systems where atoms are placed in close proximity to surfaces. |
---|