Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems
Many radar applications, such as those involving multiple-input, multiple-output (MIMO) radar, require sets of waveforms that are orthogonal, or nearly orthogonal. As shown in the work presented here, a set of nearly orthogonal waveforms with a high cardinality can be generated using chaotic systems...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2013
|
Online Access: | http://hdl.handle.net/1721.1/79673 https://orcid.org/0000-0003-0647-236X |
_version_ | 1826195033309577216 |
---|---|
author | Willsey, Matt S. Cuomo, Kevin M. Oppenheim, Alan V. |
author2 | Lincoln Laboratory |
author_facet | Lincoln Laboratory Willsey, Matt S. Cuomo, Kevin M. Oppenheim, Alan V. |
author_sort | Willsey, Matt S. |
collection | MIT |
description | Many radar applications, such as those involving multiple-input, multiple-output (MIMO) radar, require sets of waveforms that are orthogonal, or nearly orthogonal. As shown in the work presented here, a set of nearly orthogonal waveforms with a high cardinality can be generated using chaotic systems, and this set performs comparably to other waveform sets used in pulse compression radar systems. Specifically, the nearly orthogonal waveforms from chaotic systems are shown to possess many desirable radar properties including a compact spectrum, low range sidelobes, and an average transmit power within a few dB of peak power. Moreover, these waveforms can be generated at essentially any practical time length and bandwidth. Since these waveforms are generated from a deterministic process, each waveform can be represented with a small number of system parameters. Additionally, assuming these waveforms possess a large time-bandwidth product, a high number of nearly orthogonal chaotic waveforms exist for a given time and bandwidth. Thus the proposed generation procedure can potentially be used to generate a new transmit waveform on each pulse. |
first_indexed | 2024-09-23T10:05:41Z |
format | Article |
id | mit-1721.1/79673 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T10:05:41Z |
publishDate | 2013 |
publisher | Institute of Electrical and Electronics Engineers (IEEE) |
record_format | dspace |
spelling | mit-1721.1/796732022-09-26T15:40:54Z Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems Willsey, Matt S. Cuomo, Kevin M. Oppenheim, Alan V. Lincoln Laboratory Lincoln Laboratory Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology. Research Laboratory of Electronics Willsey, Matt S. Cuomo, Kevin M. Oppenheim, Alan V. Many radar applications, such as those involving multiple-input, multiple-output (MIMO) radar, require sets of waveforms that are orthogonal, or nearly orthogonal. As shown in the work presented here, a set of nearly orthogonal waveforms with a high cardinality can be generated using chaotic systems, and this set performs comparably to other waveform sets used in pulse compression radar systems. Specifically, the nearly orthogonal waveforms from chaotic systems are shown to possess many desirable radar properties including a compact spectrum, low range sidelobes, and an average transmit power within a few dB of peak power. Moreover, these waveforms can be generated at essentially any practical time length and bandwidth. Since these waveforms are generated from a deterministic process, each waveform can be represented with a small number of system parameters. Additionally, assuming these waveforms possess a large time-bandwidth product, a high number of nearly orthogonal chaotic waveforms exist for a given time and bandwidth. Thus the proposed generation procedure can potentially be used to generate a new transmit waveform on each pulse. United States. Air Force (Contract FA8721-05-C-0002) Massachusetts Institute of Technology. Research Laboratory of Electronics BAE Systems Texas Instruments Incorporated. Leadership University Consortium Program 2013-07-23T13:45:04Z 2013-07-23T13:45:04Z 2010-07 2009-10 Article http://purl.org/eprint/type/JournalArticle 0018-9251 http://hdl.handle.net/1721.1/79673 Willsey, Matt S., Kevin M. Cuomo, and Alan V. Oppenheim. Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems. IEEE Transactions on Aerospace and Electronic Systems 47, no. 3 (July 2011): 1974-1984. https://orcid.org/0000-0003-0647-236X en_US http://dx.doi.org/10.1109/taes.2011.5937277 IEEE Transactions on Aerospace and Electronic Systems Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/ application/pdf Institute of Electrical and Electronics Engineers (IEEE) Oppenheim via Amy Stout |
spellingShingle | Willsey, Matt S. Cuomo, Kevin M. Oppenheim, Alan V. Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems |
title | Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems |
title_full | Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems |
title_fullStr | Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems |
title_full_unstemmed | Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems |
title_short | Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems |
title_sort | quasi orthogonal wideband radar waveforms based on chaotic systems |
url | http://hdl.handle.net/1721.1/79673 https://orcid.org/0000-0003-0647-236X |
work_keys_str_mv | AT willseymatts quasiorthogonalwidebandradarwaveformsbasedonchaoticsystems AT cuomokevinm quasiorthogonalwidebandradarwaveformsbasedonchaoticsystems AT oppenheimalanv quasiorthogonalwidebandradarwaveformsbasedonchaoticsystems |