Direct band gap narrowing in highly doped Ge
Direct band gap narrowing in highly doped n-type Ge is observed through photoluminescence measurements by determining the spectrum peak shift. A linear relationship between the direct band gap emission and carrier concentration is observed. We propose a first order phenomenological model for band ga...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Institute of Physics (AIP)
2013
|
Online Access: | http://hdl.handle.net/1721.1/79738 https://orcid.org/0000-0003-2954-8005 https://orcid.org/0000-0002-3913-6189 |
Summary: | Direct band gap narrowing in highly doped n-type Ge is observed through photoluminescence measurements by determining the spectrum peak shift. A linear relationship between the direct band gap emission and carrier concentration is observed. We propose a first order phenomenological model for band gap narrowing based on two parameters whose values for Ge are E[subscript BGN] = 0.013 eV and Δ[subscript BGN] = 10[superscript −21] eV/cm[superscript −3]. The application of these results to non-invasive determination of the active carrier concentration in submicron areas in n-type Ge structures is demonstrated. |
---|