Nanopatterned Electrically Conductive Films of Semiconductor Nanocrystals
We present the first semiconductor nanocrystal films of nanoscale dimensions that are electrically conductive and crack-free. These films make it possible to study the electrical properties intrinsic to the nanocrystals unimpeded by defects such as cracking and clustering that typically exist in lar...
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Chemical Society
2013
|
Online Access: | http://hdl.handle.net/1721.1/79791 https://orcid.org/0000-0001-7641-5438 https://orcid.org/0000-0003-2220-4365 |
Summary: | We present the first semiconductor nanocrystal films of nanoscale dimensions that are electrically conductive and crack-free. These films make it possible to study the electrical properties intrinsic to the nanocrystals unimpeded by defects such as cracking and clustering that typically exist in larger-scale films. We find that the electrical conductivity of the nanoscale films is 180 times higher than that of drop-cast, microscopic films made of the same type of nanocrystal. Our technique for forming the nanoscale films is based on electron-beam lithography and a lift-off process. The patterns have dimensions as small as 30 nm and are positioned on a surface with 30 nm precision. The method is flexible in the choice of nanocrystal core–shell materials and ligands. We demonstrate patterns with PbS, PbSe, and CdSe cores and Zn[subscript 0.5]Cd[subscript 0.5]Se–Zn[subscript 0.5]Cd[subscript 0.5]S core–shell nanocrystals with a variety of ligands. We achieve unprecedented versatility in integrating semiconductor nanocrystal films into device structures both for studying the intrinsic electrical properties of the nanocrystals and for nanoscale optoelectronic applications. |
---|