On the second-order temperature jump coefficient of a dilute gas

Author manuscript date January 19, 2012

Bibliographic Details
Main Authors: Radtke, Gregg A., Takata, S., Aoki, K., Hadjiconstantinou, Nicolas
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:en_US
Published: Cambridge University Press 2013
Online Access:http://hdl.handle.net/1721.1/79844
https://orcid.org/0000-0002-1670-2264
_version_ 1826215435505238016
author Radtke, Gregg A.
Takata, S.
Aoki, K.
Hadjiconstantinou, Nicolas
author2 Massachusetts Institute of Technology. Department of Mechanical Engineering
author_facet Massachusetts Institute of Technology. Department of Mechanical Engineering
Radtke, Gregg A.
Takata, S.
Aoki, K.
Hadjiconstantinou, Nicolas
author_sort Radtke, Gregg A.
collection MIT
description Author manuscript date January 19, 2012
first_indexed 2024-09-23T16:28:53Z
format Article
id mit-1721.1/79844
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T16:28:53Z
publishDate 2013
publisher Cambridge University Press
record_format dspace
spelling mit-1721.1/798442022-10-02T08:06:20Z On the second-order temperature jump coefficient of a dilute gas Radtke, Gregg A. Takata, S. Aoki, K. Hadjiconstantinou, Nicolas Massachusetts Institute of Technology. Department of Mechanical Engineering Radtke, Gregg A. Hadjiconstantinou, Nicolas Author manuscript date January 19, 2012 We use LVDSMC (low-variance deviational Monte Carlo) simulations to calculate, under linearized conditions, the second-order temperature jump coefficient for a dilute gas whose temperature is governed by the Poisson equation with a constant forcing term, as in the case of homogeneous volumetric heating. Both the hard-sphere gas and the BGK model of the Boltzmann equation, for which slip/jump coefficients are not functions of temperature, are considered. The temperature jump relation and jump coefficient determined here are closely linked to the general jump relations for time-dependent problems that have yet to be systematically treated in the literature; as a result, they are different from those corresponding to the well-known linear and steady case where the temperature is governed by the homogeneous heat conduction (Laplace) equation. Singapore-MIT Alliance 2013-08-14T12:50:50Z 2013-08-14T12:50:50Z 2012-07 2011-10 Article http://purl.org/eprint/type/JournalArticle 0022-1120 1469-7645 http://hdl.handle.net/1721.1/79844 Radtke, Gregg A., N. G. Hadjiconstantinou, S. Takata, and K. Aoki. “On the second-order temperature jump coefficient of a dilute gas.” Journal of Fluid Mechanics 707 (September 20, 2012): 331-341. https://orcid.org/0000-0002-1670-2264 en_US http://dx.doi.org/10.1017/jfm.2012.282 Journal of Fluid Mechanics Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/ application/pdf Cambridge University Press arXiv
spellingShingle Radtke, Gregg A.
Takata, S.
Aoki, K.
Hadjiconstantinou, Nicolas
On the second-order temperature jump coefficient of a dilute gas
title On the second-order temperature jump coefficient of a dilute gas
title_full On the second-order temperature jump coefficient of a dilute gas
title_fullStr On the second-order temperature jump coefficient of a dilute gas
title_full_unstemmed On the second-order temperature jump coefficient of a dilute gas
title_short On the second-order temperature jump coefficient of a dilute gas
title_sort on the second order temperature jump coefficient of a dilute gas
url http://hdl.handle.net/1721.1/79844
https://orcid.org/0000-0002-1670-2264
work_keys_str_mv AT radtkegregga onthesecondordertemperaturejumpcoefficientofadilutegas
AT takatas onthesecondordertemperaturejumpcoefficientofadilutegas
AT aokik onthesecondordertemperaturejumpcoefficientofadilutegas
AT hadjiconstantinounicolas onthesecondordertemperaturejumpcoefficientofadilutegas